1
|
Zhang RD, Gao FZ, Shi YJ, Zhao JL, Liu YS, He LY, Ying GG. Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124482. [PMID: 38960118 DOI: 10.1016/j.envpol.2024.124482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread.
Collapse
Affiliation(s)
- Run-Dong Zhang
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yi-Jing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wang BY, Bu HS, Xia LB, Jiang XY, Tong YQ. Low Concentration of Wenyang Tonglin Decoction Promotes Conjugation and Transfer of Drug-Resistant Plasmids among Heterologous Strains. Chin J Integr Med 2024; 30:721-728. [PMID: 38816636 DOI: 10.1007/s11655-024-3904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To investigate the effect of low concentration of Wenyang Tonglin Decoction (WTD) on the binding conditions of R45 plasmid conjugative transfer under liquid phase conjugation and its mechanism. METHODS Escherichia coli CP9 (R45) and Staphylococcus aureus RN450RF were cultured in medium containing WTD, and their minimum inhibitory concentration (MIC) values were obtained. Using promoter fusion technology, E. coli CP9 (R45) containing a promoter fusion was obtained. β-Galactosidase activity of TrfAp and TrbBp was tested, and the mRNA expression of regulatory factors (TrbA, KorA, and KorB) was detected by real-time fluorescent quantitative polymerase chain reaction. RESULTS The MIC of E. coli CP9 (R45) was 400 g/L and that of S. aureus RN450RF was 200 g/L. When the drug concentration in the culture medium was 200 g/L, the highest number of conjugants was (3.47 ±0.20) × 107 CFU/mL At 90 h of conjugation, the maximum number of conjugants was (1.15 ±0.06) × 108 CFU/mL When the initial bacterial concentration was 108 CFU/mL, the maximum number of conjugants was (3.47 ± 0.20) × 107 CFU/mL. When the drug concentration was 200 g/L, the β-galactosidase activity of TrfAp and TrbBp significantly increased; the relative quantification of TrbA, KorA and KorB were significantly inhibited. CONCLUSION Low concentration of WTD promoted the development of bacterial resistance by affecting promoters and inhibiting the expression of regulatory factors.
Collapse
Affiliation(s)
- Bi-Yan Wang
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Hong-Shi Bu
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Li-Bo Xia
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiang-Yu Jiang
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yan-Qing Tong
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
3
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Aguilar-Luviano OB, Velez-Santiago J, Mondragón-Palomino O, MacLean RC, Fuentes-Hernández A, San Millán A, Peña-Miller R. Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. Nat Commun 2024; 15:2610. [PMID: 38521779 PMCID: PMC10960800 DOI: 10.1038/s41467-024-45045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.
Collapse
Affiliation(s)
- J Carlos R Hernandez-Beltran
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | | | | | - Jesús Velez-Santiago
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Craig MacLean
- Department of Biology, University of Oxford, OX1 3SZ, Oxford, UK
| | - Ayari Fuentes-Hernández
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Alvaro San Millán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - CSIC, 28049, Madrid, Spain
| | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
| |
Collapse
|
5
|
Yang T, Wang X, Jiang L, Hui X, Bi X, Zheng X, Jiang B, Wang X. Mobility, bacterial hosts, and risks of antibiotic resistome in submicron bioaerosols from a full-scale wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119771. [PMID: 38071920 DOI: 10.1016/j.jenvman.2023.119771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Antibiotic resistome could be loaded by bioaerosols and escape from wastewater or sludge to atmosphere environments. However, until recently, their profile, mobility, bacterial hosts, and risks in submicron bioaerosols (PM1.0) remain unclear. Here, metagenomic sequencing and assembly were employed to conduct an investigation of antibiotic resistome associated with PM1.0 within and around a full-scale wastewater treatment plant (WWTP). More subtypes of antibiotic resistant genes (ARGs) with higher total abundance were found along the upwind-downwind-WWTP transect. ARGs in WWTP-PM1.0 were mainly mediated by plasmids and transposases were the most prevalent mobile genetic elements (MGEs) co-occurring with ARGs. A contig-based analysis indicated that very small proportions (15.32%-19.74%) of ARGs in WWTP-PM1.0 were flanked by MGEs. Proteobacteria was the most dominant host of ARGs. A total of 28 kinds of potential pathogens, such as Pseudomonas aeruginosa and Escherichia coli, carried multiple ARG types. Compared to upwind, WWTP and corresponding downwind were characterized by higher PM1.0 resistome risk. This study emphasizes the vital role of WWTPs in discharging PM1.0-loaded ARGs and antibiotic resistant pathogens to air, and indicates the need for active safeguard procedures, such as that employees wear masks and work clothes, covering the main emission sites, and collecting and destroying of bioaerosols.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
6
|
Moraïs S, Mazor M, Tovar-Herrera O, Zehavi T, Zorea A, Ifrach M, Bogumil D, Brandis A, Walter J, Elia N, Gur E, Mizrahi I. Plasmid-encoded toxin defence mediates mutualistic microbial interactions. Nat Microbiol 2024; 9:108-119. [PMID: 38151647 PMCID: PMC10769881 DOI: 10.1038/s41564-023-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2023] [Indexed: 12/29/2023]
Abstract
Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael Mazor
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Omar Tovar-Herrera
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Tamar Zehavi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Morya Ifrach
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - David Bogumil
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Walter
- Department of Medicine, University College Cork, Cork, Ireland
| | - Natalie Elia
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eyal Gur
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
7
|
Urbaniec J, Getino M, McEwan TBD, Sanderson-Smith ML, McFadden J, Hai F, La Ragione R, Hassan MM, Hingley-Wilson S. Anti-persister efficacy of colistin and meropenem against uropathogenic Escherichia coli is dependent on environmental conditions. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37990974 DOI: 10.1099/mic.0.001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Antibiotic persistence is a phenomenon observed when genetically susceptible cells survive long-term exposure to antibiotics. These 'persisters' are an intrinsic component of bacterial populations and stem from phenotypic heterogeneity. Persistence to antibiotics is a concern for public health globally, as it increases treatment duration and can contribute to treatment failure. Furthermore, there is a growing array of evidence that persistence is a 'stepping-stone' for the development of genetic antimicrobial resistance. Urinary tract infections (UTIs) are a major contributor to antibiotic consumption worldwide, and are known to be both persistent (i.e. affecting the host for a prolonged period) and recurring. Currently, in clinical settings, routine laboratory screening of pathogenic isolates does not determine the presence or the frequency of persister cells. Furthermore, the majority of research undertaken on antibiotic persistence has been done on lab-adapted bacterial strains. In the study presented here, we characterized antibiotic persisters in a panel of clinical uropathogenic Escherichia coli isolates collected from hospitals in the UK and Australia. We found that a urine-pH mimicking environment not only induces higher levels of antibiotic persistence to meropenem and colistin than standard laboratory growth conditions, but also results in rapid development of transient colistin resistance, regardless of the genetic resistance profile of the isolate. Furthermore, we provide evidence for the presence of multiple virulence factors involved in stress resistance and biofilm formation in the genomes of these isolates, whose activities have been previously shown to contribute to the formation of persister cells.
Collapse
Affiliation(s)
- Joanna Urbaniec
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Johnjoe McFadden
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Roberto La Ragione
- Department of Microbial Sciences, University of Surrey, Guildford, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Marwa M Hassan
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | |
Collapse
|
8
|
Weiss A, Wang T, You L. Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities. Cell Syst 2023; 14:895-905.e5. [PMID: 37820728 PMCID: PMC10591896 DOI: 10.1016/j.cels.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Transferable plasmids play a critical role in shaping the functions of microbial communities. Previous studies suggested multiple mechanisms underlying plasmid persistence and abundance. Here, we focus on the interplay between heterogeneous community partitioning and plasmid fates. Natural microbiomes often experience partitioning that creates heterogeneous local communities with reduced population sizes and biodiversity. Little is known about how population partitioning affects the plasmid fate through the modulation of community structure. By modeling and experiments, we show that heterogeneous community partitioning can paradoxically promote the persistence of a plasmid that would otherwise not persist in a global community. Among the local communities created by partitioning, a minority will primarily consist of members able to transfer the plasmid fast enough to support its maintenance by serving as a local plasmid haven. Our results provide insights into plasmid maintenance and suggest a generalizable approach to modulate plasmid persistence for engineering and medical applications.
Collapse
Affiliation(s)
- Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
10
|
Shi B, Zhao R, Su G, Liu B, Liu W, Xu J, Li Q, Meng J. Metagenomic surveillance of antibiotic resistome in influent and effluent of wastewater treatment plants located on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162031. [PMID: 36740063 DOI: 10.1016/j.scitotenv.2023.162031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
As hotspots for the dissemination of antibiotic resistance genes (ARGs), wastewater treatment plants (WWTPs) have attracted global attention. However, there lacks a sufficient metagenomic surveillance of antibiotic resistome in the WWTPs located on the Qinghai-Tibet Plateau. Here, metagenomic approaches were used to comprehensively investigate the occurrence, mobility potential, and bacterial hosts of ARGs in influent and effluent of 18 WWTPs located on the Qinghai-Tibet Plateau. The total ARG relative abundances and diversity were significantly decreased from influent to effluent across the WWTPs. Multidrug, bacitracin, sulfonamide, aminoglycoside, and beta-lactam ARGs generally consisted of the main ARG types in effluent samples, which were distinct from influent samples. A group of 72 core ARGs accounting for 61.8-95.8 % of the total ARG abundances were shared by all samples. Clinically relevant ARGs mainly conferring resistance to beta-lactams were detected in influent (277 ARGs) and effluent (178 ARGs). Metagenomic assembly revealed that the genetic location of an ARG on a plasmid or a chromosome was related to its corresponding ARG type, demonstrating the distinction in the mobility potential of different ARG types. The abundance of plasmid-mediated ARGs accounted for a much higher proportion than that of chromosome-mediated ARGs in both influent and effluent. Moreover, the ARGs co-occurring with diverse mobile genetic elements in the effluent exhibited a comparable mobility potential with the influent. Furthermore, 137 metagenome-assembled genomes (MAGs) assigned to 13 bacterial phyla were identified as the ARG hosts, which could be effectively treated in most WWTPs. Notably, 46 MAGs were found to carry multiple ARG types and the potential pathogens frequently exhibited multi-antibiotic resistance. Some ARG types tended to be carried by certain bacteria, showing a specific host-resistance association pattern. This study highlights the necessity for metagenomic surveillance and will facilitate risk assessment and control of antibiotic resistome in WWTPs located on the vulnerable area.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renxin Zhao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyue Liu
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Pilosof S. Conceptualizing microbe-plasmid communities as complex adaptive systems. Trends Microbiol 2023:S0966-842X(23)00025-2. [PMID: 36822952 DOI: 10.1016/j.tim.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Plasmids shape microbial communities' diversity, structure, and function. Nevertheless, we lack a mechanistic understanding of how community structure and dynamics emerge from local microbe-plasmid interactions and coevolution. Addressing this gap is challenging because multiple processes operate simultaneously at multiple levels of organization. For example, immunity operates between a plasmid and a cell, but incompatibility mechanisms regulate coexistence between plasmids. Conceptualizing microbe-plasmid communities as complex adaptive systems is a promising approach to overcoming these challenges. I illustrate how agent-based evolutionary modeling, extended by network analysis, can be used to quantify the relative importance of local processes governing community dynamics. These theoretical developments can advance our understanding of plasmid ecology and evolution, especially when combined with empirical data.
Collapse
Affiliation(s)
- Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
12
|
Liu B, Guo Y, Liu N, Wang J, Li F, Yao L, Zhuo C. In silico Evolution and Comparative Genomic Analysis of IncX3 Plasmids Isolated From China Over Ten Years. Front Microbiol 2021; 12:725391. [PMID: 34925253 PMCID: PMC8681339 DOI: 10.3389/fmicb.2021.725391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
IncX3 plasmids are correlated with the dissemination and acquisition of carbapenem resistance in Enterobacteriaceae and have been prevalent in China over the last 10 years. Since the distribution characteristics of IncX3 plasmids across China as well as their evolutionary traits for 10 years remain unclear, here we conducted a retrospective literature review and in silico comparative analysis of IncX3 plasmids in publicly available IncX3 plasmid genomes. IncX3 plasmids distributed in 17 provinces or cities were extracted for analysis, which tend to be specifically associated with hospital-isolated Escherichia coli ST410 from phylogroup A. Although the backbones of IncX3 plasmids have remained highly conservative over the last 10 years, the blaNDM resistance genetic contexts on these plasmids could fall into five subtypes, among which AR_N1_I has been identified in Enterobacter cloacae174 chromosome and AR_N5_I was simultaneously located on IncF and IncA/C plasmids. This suggests that the blaNDM resistance gene environment can spread between different plasmids, between different bacterial genera, or between strains and plasmids, highlighting that it is imperative to adopt more stringent infection control measures targeting IncX3 plasmid spread.
Collapse
Affiliation(s)
- Baomo Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
14
|
Wang T, Weiss A, Ha Y, You L. Predicting plasmid persistence in microbial communities by coarse-grained modeling. Bioessays 2021; 43:e2100084. [PMID: 34278591 DOI: 10.1002/bies.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
Plasmids are a major type of mobile genetic elements (MGEs) that mediate horizontal gene transfer. The stable maintenance of plasmids plays a critical role in the functions and survival for microbial populations. However, predicting and controlling plasmid persistence and abundance in complex microbial communities remain challenging. Computationally, this challenge arises from the combinatorial explosion associated with the conventional modeling framework. Recently, a plasmid-centric framework (PCF) has been developed to overcome this computational bottleneck. This framework enables the derivation of a simple metric, the persistence potential, to predict plasmid persistence and abundance. Here, we discuss how PCF can be extended to account for plasmid interactions. We also discuss how such model-guided predictions of plasmid fates can benefit from the development of new experimental tools and data-driven computational methods.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Yuanchi Ha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|