1
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
2
|
Silva RG, Amaral PP, Franco GR, Góes-Neto A. Exploring the hidden hot world of long non-coding RNAs in thermophilic fungus using a robust computational pipeline. Sci Rep 2024; 14:19797. [PMID: 39187522 PMCID: PMC11347667 DOI: 10.1038/s41598-024-67975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are versatile RNA molecules recently identified as key regulators of gene expression in response to environmental stress. Our primary focus in this study was to develop a robust computational pipeline for identifying structurally identical lncRNAs across replicates from publicly available bulk RNA-seq datasets. In order to demonstrate the effectiveness of the pipeline, we utilized the transcriptome of the thermophilic fungus Thermothelomyces thermophilus and assessed the expression pattern of lncRNAs in conjunction with Heat Shock Proteins (HSP), a well-known protein family critical for the cell's response to high temperatures. Our findings demonstrate that the identification of structurally identical transcripts among replicates in this thermophilic fungus ensures the reliability and accuracy of RNA studies, contributing to the validity of biological interpretations. Furthermore, the majority of lncRNAs exhibited a distinct expression pattern compared to HSPs. Our study contributes to advancing the understanding of the biological mechanisms comprising lncRNAs in thermophilic fungi.
Collapse
Affiliation(s)
- Roger G Silva
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo P Amaral
- Institute of Education and Research, São Paulo, SP, Brazil
| | - Glória R Franco
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Fayed B, Shakartalla SB, Sabbah H, Dalle H, Tannira M, Senok A, Soliman SSM. Transcriptome Analysis of Human Dermal Cells Infected with Candida auris Identified Unique Pathogenesis/Defensive Mechanisms Particularly Ferroptosis. Mycopathologia 2024; 189:65. [PMID: 38990436 DOI: 10.1007/s11046-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wad Medani, Sudan
| | - Hassan Sabbah
- AbbVie BioPharmaceuticals, P.O. Box 118052, Dubai, UAE
| | - Hala Dalle
- AbbVie BioPharmaceuticals, Kuwait City, Kuwait
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
4
|
Jiang Q, Chen Y, Zheng S, Sui L, Yu D, Qing F, He W, Xiao Q, Guo T, Xu L, Liu Z, Liu Z. AIM2 enhances Candida albicans infection through promoting macrophage apoptosis via AKT signaling. Cell Mol Life Sci 2024; 81:280. [PMID: 38918243 PMCID: PMC11335202 DOI: 10.1007/s00018-024-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.
Collapse
Affiliation(s)
- Qian Jiang
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yayun Chen
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siping Zheng
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dalang Yu
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Furong Qing
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhichun Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhiping Liu
- School of Graduate, China Medical University, Shenyang, Liaoning, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Sheen K, Myung S, Lee DM, Yu S, Choi Y, Kim T, Kim J, Ji SG, Kim MS, Kim W, Lee Y, Kim MS, Park YC. RNA-Seq of an LPS-Induced Inflammation Model Reveals Transcriptional Profile Patterns of Inflammatory Processes. Life (Basel) 2024; 14:558. [PMID: 38792580 PMCID: PMC11121855 DOI: 10.3390/life14050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The LPS-induced inflammation model is widely used for studying inflammatory processes due to its cost-effectiveness, reproducibility, and faithful representation of key hallmarks. While researchers often validate this model using clinical cytokine markers, a comprehensive understanding of gene regulatory mechanisms requires extending investigation beyond these hallmarks. Our study leveraged multiple whole-blood bulk RNA-seq datasets to rigorously compare the transcriptional profiles of the well-established LPS-induced inflammation model with those of several human diseases characterized by systemic inflammation. Beyond conventional inflammation-associated systems, we explored additional systems indirectly associated with inflammatory responses (i.e., ISR, RAAS, and UPR) using a customized core inflammatory gene list. Our cross-condition-validation approach spanned four distinct conditions: systemic lupus erythematosus (SLE) patients, dengue infection, candidemia infection, and staphylococcus aureus exposure. This analysis approach, utilizing the core gene list aimed to assess the model's suitability for understanding the gene regulatory mechanisms underlying inflammatory processes triggered by diverse factors. Our analysis resulted in elevated expressions of innate immune-associated genes, coinciding with suppressed expressions of adaptive immune-associated genes. Also, upregulation of genes associated with cellular stresses and mitochondrial innate immune responses underscored oxidative stress as a central driver of the corresponding inflammatory processes in both the LPS-induced and other inflammatory contexts.
Collapse
Affiliation(s)
- Kisung Sheen
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Seokho Myung
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Dong-Min Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Acupuncture & Moxibustion, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Sanghyeon Yu
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Taeyoon Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jihan Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Sang-Gu Ji
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Myung-Seo Kim
- Department of Orthopaedic Surgery, Shoulder & Elbow Clinic, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea;
| | - Wonnam Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea; (K.S.); (S.M.); (D.-M.L.); (S.Y.); (Y.C.); (T.K.); (J.K.); (S.-G.J.); (Y.L.)
| | - Yeon-Cheol Park
- Department of Acupuncture & Moxibustion, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
6
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Chen Y, Jiang Q, Qing F, Xue J, Xiao Q, He W, Sui L, Liu Z. MDA5 Enhances Invasive Candida albicans Infection by Regulating Macrophage Apoptosis and Phagocytosis/Killing Functions. Inflammation 2024; 47:191-208. [PMID: 37740789 DOI: 10.1007/s10753-023-01903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Candida albicans is a common opportunistic pathogenic fungus. The innate immune system provides the first-line host defense against fungal infection. Innate immune receptors and downstream molecules have been shown to play various roles during fungal infection. The innate immune receptor MDA5, encoded by the gene Ifih1, enhances host resistance against viral and Aspergillus fumigatus infection by inducing the production of interferons (IFNs). However, the role of MDA5 in C. albicans infection is still unclear. Here, we found that the gene expression levels of IFIH1 were significantly increased in innate immune cells after C. albicans stimulation through human bioinformatics analysis or mouse experiments. Through in vivo study, MDA5 was shown to enhance host susceptibility to C. albicans infection independent of IFN production. Instead, MDA5 exerted its influence on macrophages and kidneys by modulating the expression of Noxa, Bcl2, and Bax, thereby promoting apoptosis. Additionally, MDA5 compromised killing capabilities of macrophage by inhibition iNOS expression. The introduction of the apoptosis inducer PAC1 further impaired macrophage functions, mimicking the enhancing effect of MDA5 on C. albicans infection. Furthermore, the administration of macrophage scavengers increased the susceptibility of Ifih1-/- mice to C. albicans. The founding suggests that MDA5 promote host susceptibility to invasive C. albicans by enhancing cell apoptosis and compromising macrophage functions, making MDA5 a target to treat candidiasis.
Collapse
Affiliation(s)
- Yayun Chen
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qian Jiang
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Furong Qing
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junxia Xue
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Qiuxiang Xiao
- Department of Pathology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wenji He
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lina Sui
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhiping Liu
- School of Graduate, China Medical University, Shenyang, Liaoning, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
8
|
Teh BW, Mikulska M, Averbuch D, de la Camara R, Hirsch HH, Akova M, Ostrosky-Zeichner L, Baddley JW, Tan BH, Mularoni A, Subramanian AK, La Hoz RM, Marinelli T, Boan P, Aguado JM, Grossi PA, Maertens J, Mueller NJ, Slavin MA. Consensus position statement on advancing the standardised reporting of infection events in immunocompromised patients. THE LANCET. INFECTIOUS DISEASES 2024; 24:e59-e68. [PMID: 37683684 DOI: 10.1016/s1473-3099(23)00377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/10/2023]
Abstract
Patients can be immunocompromised from a diverse range of disease and treatment factors, including malignancies, autoimmune disorders and their treatments, and organ and stem-cell transplantation. Infections are a leading cause of morbidity and mortality in immunocompromised patients, and the disease treatment landscape is continually evolving. Despite being a critical but preventable and curable adverse event, the reporting of infection events in randomised trials lacks sufficient detail while inconsistency of categorisation and definition of infections in observational and registry studies limits comparability and future pooling of data. A core reporting dataset consisting of category, site, severity, organism, and endpoints was developed as a minimum standard for reporting of infection events in immunocompromised patients across study types. Further additional information is recommended depending on study type. The standardised reporting of infectious events and attributable complications in immunocompromised patients will improve diagnostic, treatment, and prevention approaches and facilitate future research in this patient group.
Collapse
Affiliation(s)
- Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dina Averbuch
- Pediatric Infectious Diseases, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Hadassah Medical Center, Jerusalem, Israel
| | | | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Murat Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, University of Texas, Houston, TX, USA
| | - John W Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
| | - Aruna K Subramanian
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo M La Hoz
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tina Marinelli
- Department of Infectious Diseases, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter Boan
- Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Jose Maria Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), CIBERINFEC, Universidad Complutense, Madrid, Spain
| | - Paolo A Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Johan Maertens
- Department of Haematology, Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
9
|
Desai JV, Kumar D, Freiwald T, Chauss D, Johnson MD, Abers MS, Steinbrink JM, Perfect JR, Alexander B, Matzaraki V, Snarr BD, Zarakas MA, Oikonomou V, Silva LM, Shivarathri R, Beltran E, Demontel LN, Wang L, Lim JK, Launder D, Conti HR, Swamydas M, McClain MT, Moutsopoulos NM, Kazemian M, Netea MG, Kumar V, Köhl J, Kemper C, Afzali B, Lionakis MS. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 2023; 186:2802-2822.e22. [PMID: 37220746 PMCID: PMC10330337 DOI: 10.1016/j.cell.2023.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA; Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Julie M Steinbrink
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - John R Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Vasiliki Matzaraki
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lakmali M Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Raju Shivarathri
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Emily Beltran
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luciana Negro Demontel
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
de Figueiredo AMB, dos Santos JC, Kischkel B, Ardiansyah E, Oosting M, Guimarães Matos G, Barreto Neves Oliveira I, van de Veerdonk F, Netea MG, Soares CMDA, Ribeiro-Dias F, Joosten LAB. Genome-Wide Association Study Reveals CLEC7A and PROM1 as Potential Regulators of Paracoccidioides brasiliensis-Induction of Cytokine Production in Peripheral Blood Mononuclear Cells. J Fungi (Basel) 2023; 9:jof9040428. [PMID: 37108883 PMCID: PMC10144159 DOI: 10.3390/jof9040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides and the different clinical forms of the disease are associated with the host immune responses. Quantitative trait loci mapping analysis was performed to assess genetic variants associated with mononuclear-cells-derived cytokines induced by P. brasiliensis on 158 individuals. We identified the rs11053595 SNP, which is present in the CLEC7A gene (encodes the Dectin-1 receptor) and the rs62290169 SNP located in the PROM1 gene (encodes CD133) associated with the production of IL-1β and IL-22, respectively. Functionally, the blockade of the dectin-1 receptor abolished the IL-1β production in P. brasiliensis-stimulated PBMCs. Moreover, the rs62290169-GG genotype was associated with higher frequency of CD38+ Th1 cells in PBMCs cultured with P. brasiliensis yeasts. Therefore, our research indicates that the CLEC7A and PROM1 genes are important for the cytokine response induced by P. brasiliensis and may influence the Paracoccidioidomycosis disease outcome.
Collapse
|
11
|
Matzaraki V, Beno A, Jaeger M, Gresnigt MS, Keur N, Boahen C, Cunha C, Gonçalves SM, Leite L, Lacerda JF, Campos A, van de Veerdonk FL, Joosten L, Netea MG, Carvalho A, Kumar V. Genetic determinants of fungi-induced ROS production are associated with the risk of invasive pulmonary aspergillosis. Redox Biol 2022; 55:102391. [PMID: 35834984 PMCID: PMC9283926 DOI: 10.1016/j.redox.2022.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are an essential component of the host defense against fungal infections. However, little is known about how common genetic variation affects ROS-mediated antifungal host defense. In the present study, we investigated the genetic factors that regulate ROS production capacity in response to the two human fungal pathogens: Candida albicans and Aspergillus fumigatus. We investigated fungal-stimulated ROS production by immune cells isolated from a population-based cohort of approximately 200 healthy individuals (200FG cohort), and mapped ROS-quantitative trait loci (QTLs). We identified several genetic loci that regulate ROS levels (P < 9.99 × 10-6), with some of these loci being pathogen-specific, and others shared between the two fungi. These ROS-QTLs were investigated for their influence on the risk of invasive pulmonary aspergillosis (IPA) in a disease relevant context. We stratified hematopoietic stem-cell transplant (HSCT) recipients based on the donor's SNP genotype and tested their impact on the risk of IPA. We identified rs4685368 as a ROS-QTL locus that was significantly associated with an increased risk of IPA after controlling for patient age and sex, hematological malignancy, type of transplantation, conditioning regimen, acute graft-versus-host-disease grades III-IV, and antifungal prophylaxis. Collectively, this data provides evidence that common genetic variation can influence ROS production capacity, and, importantly, the risk of developing IPA among HSCT recipients. This evidence warrants further research for patient stratification based on the genetic profiling that would allow the identifications of patients at high-risk for an invasive fungal infection, and who would benefit the most from a preventive strategy.
Collapse
Affiliation(s)
- Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands.
| | - Alexandra Beno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Collins Boahen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Luis Leite
- Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
| | - João F Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea (STMO), Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700RB, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
12
|
Type I interferons during host–fungus interactions: Is antifungal immunity going viral? PLoS Pathog 2022; 18:e1010740. [PMID: 36006878 PMCID: PMC9409562 DOI: 10.1371/journal.ppat.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Bruno M, Davidson L, Koenen HJPM, van den Reek JMPA, van Cranenbroek B, de Jong EMGJ, van de Veerdonk FL, Kullberg BJ, Netea MG. Immunological effects of anti-IL-17/12/23 therapy in patients with psoriasis complicated by Candida infections. J Invest Dermatol 2022; 142:2929-2939.e8. [PMID: 35662644 DOI: 10.1016/j.jid.2022.05.1083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Biologics that block the T-helper-17 pathway are very effective in the treatment of psoriasis and other inflammatory diseases. However, interleukin-17 is also crucial for antifungal host defense, and clinical trial data suggest an increase in the incidence of Candida infections during IL-17 inhibitor (IL-17i) therapy. We investigated the innate and adaptive immune responses of psoriasis patients with a history of skin and/or mucosal candidiasis during IL-17i or IL-12/23i therapy, comparing those responses to healthy controls. Psoriasis patients with IL-17i showed significantly lower CD4+Th1-like (CCR6-CXCR3+CCR4-) and Th1Th17-like (CD4+CCR6+CXCR3+CCR4-) cell percentages. Patient cells stimulated with Candida albicans produced significantly lower IL-6 in the IL-12/23i group and IL-1β production in the IL-17i group, while the release of TNF-α and ROS was similar between patients and controls. IFN-γ and IL-10 production in response to several stimuli after 7 days was particularly decreased in patients receiving IL-17i therapy. Finally, after stimulation with the polarizing cytokines IL-1β and IL-23, the Th17 cytokine response was significantly lower in the IL-17i patient group. These innate and adaptive immune response defects can diminish antifungal host immune response and thereby increase susceptibility to candidiasis in patients treated with IL-17i or IL-12/23i.
Collapse
Affiliation(s)
- Mariolina Bruno
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Linda Davidson
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | | | - Bram van Cranenbroek
- Laboratory Medical Immunology, Radboud University Medical Center, the Netherlands
| | - Elke M G J de Jong
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Radboud University Medical Center Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
16
|
Dewi IM, Cunha C, Jaeger M, Gresnigt MS, Gkountzinopoulou ME, Garishah FM, Duarte-Oliveira C, Campos CF, Vanderbeke L, Sharpe AR, Brüggemann RJ, Verweij PE, Lagrou K, Vande Velde G, de Mast Q, Joosten LA, Netea MG, van der Ven AJ, Wauters J, Carvalho A, van de Veerdonk FL. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep Med 2021; 2:100289. [PMID: 34095887 PMCID: PMC8149467 DOI: 10.1016/j.xcrm.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) has been reported increasingly since the advent of use of neuraminidase (NA) inhibitors following the 2009 influenza pandemic. We hypothesize that blocking host NA modulates the immune response against Aspergillus fumigatus. We demonstrate that NA influences the host response against A. fumigatus in vitro and that oseltamivir increases the susceptibility of mice to pulmonary aspergillosis. Oseltamivir impairs the mouse splenocyte and human peripheral blood mononuclear cell (PBMC) killing capacity of A. fumigatus, and adding NA restores this defect in PBMCs. Furthermore, the sialic acid-binding receptor SIGLEC15 is upregulated in PBMCs stimulated with A. fumigatus. Silencing of SIGLEC15 decrease PBMC killing of A. fumigatus. We provide evidence that host NA activity and sialic acid recognition are important for anti-Aspergillus defense. NA inhibitors might predispose individuals with severe influenza to invasive aspergillosis. These data shed light on the pathogenesis of invasive fungal infections and may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Intan M.W. Dewi
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoll Institute, Jena, Germany
| | | | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudia F. Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Lore Vanderbeke
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Roger J. Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Joost Wauters
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | | |
Collapse
|
17
|
Bruno M, Horst R, Pekmezovic M, Kumar V, Li Y, Netea MG, Latgé JP, Gresnigt MS, van de Veerdonk FL. Data of common and species-specific transcriptional host responses to pathogenic fungi. Data Brief 2021; 35:106928. [PMID: 33850980 PMCID: PMC8039545 DOI: 10.1016/j.dib.2021.106928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Using a comparative RNA-Sequencing based transcriptional profiling approach, responses of primary human peripheral blood mononuclear cells (PBMCs) to common human pathogenic fungi have been characterized (Bruno et al. Computational and Structural Biology Journal). Primary human PBMCs were stimulated in vitro with the fungi A. fumigatus, C. albicans, and R. oryzae after which RNA was isolated and sequenced. From raw sequencing reads differential expressed genes in response to the different fungi where calculated by comparison with unstimulated cells. By overlapping differentially expressed genes in response to the pathogenic fungi A. fumigatus, C. albicans, and R. oryzae a dataset was generated that encompasses a common response to these three distinct fungi as well as species-specific responses. Here we present datasets on these common and species-specific responses that complement the original study (Bruno et al. Computational and Structural Biology Journal). These data serve to facilitate further fundamental research on the immune response to opportunistic pathogenic fungi such as A. fumigatus, C. albicans, and R. oryzae.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Mark S Gresnigt
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|