1
|
Lee Y, Park SH, Lee H. Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC. Mol Syst Biol 2024; 20:1156-1172. [PMID: 39322849 PMCID: PMC11535030 DOI: 10.1038/s44320-024-00065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
The 3D genome prediction in cancer is crucial for uncovering the impact of structural variations (SVs) on tumorigenesis, especially when they are present in noncoding regions. We present InfoHiC, a systemic framework for predicting the 3D cancer genome directly from whole-genome sequencing (WGS). InfoHiC utilizes contig-specific copy number encoding on the SV contig assembly, and performs a contig-to-total Hi-C conversion for the cancer Hi-C prediction from multiple SV contigs. We showed that InfoHiC can predict 3D genome folding from all types of SVs using breast cancer cell line data. We applied it to WGS data of patients with breast cancer and pediatric patients with medulloblastoma, and identified neo topologically associating domains. For breast cancer, we discovered super-enhancer hijacking events associated with oncogenic overexpression and poor survival outcomes. For medulloblastoma, we found SVs in noncoding regions that caused super-enhancer hijacking events of medulloblastoma driver genes (GFI1, GFI1B, and PRDM6). In addition, we provide trained models for cancer Hi-C prediction from WGS at https://github.com/dmcb-gist/InfoHiC , uncovering the impacts of SVs in cancer patients and revealing novel therapeutic targets.
Collapse
Affiliation(s)
- Yeonghun Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
- AI Graduate School, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Kim YR, Joo J, Lee HJ, Kim C, Park JC, Yu YS, Kim CR, Lee DH, Cha J, Kwon H, Hanssen KM, Grünewald TGP, Choi M, Han I, Bae S, Jung I, Shin Y, Baek SH. Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing's sarcoma. Nat Commun 2024; 15:6569. [PMID: 39095374 PMCID: PMC11297139 DOI: 10.1038/s41467-024-51050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless organelles within cells, with implications in various biological processes and disease states. AT-rich interactive domain-containing protein 1A (ARID1A) is a chromatin remodeling factor frequently associated with cancer mutations, yet its functional mechanism remains largely unknown. Here, we find that ARID1A harbors a prion-like domain (PrLD), which facilitates the formation of liquid condensates through PrLD-mediated LLPS. The nuclear condensates formed by ARID1A LLPS are significantly elevated in Ewing's sarcoma patient specimen. Disruption of ARID1A LLPS results in diminished proliferative and invasive abilities in Ewing's sarcoma cells. Through genome-wide chromatin structure and transcription profiling, we identify that the ARID1A condensate localizes to EWS/FLI1 target enhancers and induces long-range chromatin architectural changes by forming functional chromatin remodeling hubs at oncogenic target genes. Collectively, our findings demonstrate that ARID1A promotes oncogenic potential through PrLD-mediated LLPS, offering a potential therapeutic approach for treating Ewing's sarcoma.
Collapse
Affiliation(s)
- Yong Ryoul Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea
| | - Hee Jung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Chaelim Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Ju-Chan Park
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Do Hui Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyemin Kwon
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kimberley M Hanssen
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, (A Partnership) Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangsu Bae
- Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, South Korea.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Kim K, Kim M, Lee AJ, Song SH, Kang JK, Eom J, Kang GH, Bae JM, Min S, Kim Y, Lim Y, Kim HS, Kim YJ, Kim TY, Jung I. Spatial and clonality-resolved 3D cancer genome alterations reveal enhancer-hijacking as a potential prognostic marker for colorectal cancer. Cell Rep 2023; 42:112778. [PMID: 37453058 DOI: 10.1016/j.celrep.2023.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
The regulatory effect of non-coding large-scale structural variations (SVs) on proto-oncogene activation remains unclear. This study investigated SV-mediated gene dysregulation by profiling 3D cancer genome maps from 40 patients with colorectal cancer (CRC). We developed a machine learning-based method for spatial characterization of the altered 3D cancer genome. This revealed a frequent establishment of "de novo chromatin contacts" that can span multiple topologically associating domains (TADs) in addition to the canonical TAD fusion/shuffle model. Using this information, we precisely identified super-enhancer (SE)-hijacking and its clonal characteristics. Clonal SE-hijacking genes, such as TOP2B, are recurrently associated with cell-cycle/DNA-processing functions, which can potentially be used as CRC prognostic markers. Oncogene activation and increased drug resistance due to SE-hijacking were validated by reconstructing the patient's SV using CRISPR-Cas9. Collectively, the spatial and clonality-resolved analysis of the 3D cancer genome reveals regulatory principles of large-scale SVs in oncogene activation and their clinical implications.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mooyoung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Andrew J Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang-Hyun Song
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Jun-Kyu Kang
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Junghyun Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yeonsoo Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Yoojoo Lim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Tae-You Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; IMBdx, Inc., Seoul 08506, Korea.
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
4
|
Joo J, Cho S, Hong S, Min S, Kim K, Kumar R, Choi JM, Shin Y, Jung I. Probabilistic establishment of speckle-associated inter-chromosomal interactions. Nucleic Acids Res 2023; 51:5377-5395. [PMID: 37013988 PMCID: PMC10287923 DOI: 10.1093/nar/gkad211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Inter-chromosomal interactions play a crucial role in genome organization, yet the organizational principles remain elusive. Here, we introduce a novel computational method to systematically characterize inter-chromosomal interactions using in situ Hi-C results from various cell types. Our method successfully identifies two apparently hub-like inter-chromosomal contacts associated with nuclear speckles and nucleoli, respectively. Interestingly, we discover that nuclear speckle-associated inter-chromosomal interactions are highly cell-type invariant with a marked enrichment of cell-type common super-enhancers (CSEs). Validation using DNA Oligopaint fluorescence in situ hybridization (FISH) shows a strong but probabilistic interaction behavior between nuclear speckles and CSE-harboring genomic regions. Strikingly, we find that the likelihood of speckle-CSE associations can accurately predict two experimentally measured inter-chromosomal contacts from Hi-C and Oligopaint DNA FISH. Our probabilistic establishment model well describes the hub-like structure observed at the population level as a cumulative effect of summing individual stochastic chromatin-speckle interactions. Lastly, we observe that CSEs are highly co-occupied by MAZ binding and MAZ depletion leads to significant disorganization of speckle-associated inter-chromosomal contacts. Taken together, our results propose a simple organizational principle of inter-chromosomal interactions mediated by MAZ-occupied CSEs.
Collapse
Affiliation(s)
- Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunghyun Cho
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sukbum Hong
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyukwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Rajeev Kumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Choi B, Kang CK, Park S, Lee D, Lee AJ, Ko Y, Kang SJ, Kang K, Kim S, Koh Y, Jung I. Single-cell transcriptome analyses reveal distinct gene expression signatures of severe COVID-19 in the presence of clonal hematopoiesis. Exp Mol Med 2022; 54:1756-1765. [PMID: 36229591 PMCID: PMC9559247 DOI: 10.1038/s12276-022-00866-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 01/08/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), a common aging-related process that predisposes individuals to various inflammatory responses, has been reported to be associated with COVID-19 severity. However, the immunological signature and the exact gene expression program by which the presence of CHIP exerts its clinical impact on COVID-19 remain to be elucidated. In this study, we generated a single-cell transcriptome landscape of severe COVID-19 according to the presence of CHIP using peripheral blood mononuclear cells. Patients with CHIP exhibited a potent IFN-γ response in exacerbating inflammation, particularly in classical monocytes, compared to patients without CHIP. To dissect the regulatory mechanism of CHIP (+)-specific IFN-γ response gene expression in severe COVID-19, we identified DNMT3A CHIP mutation-dependent differentially methylated regions (DMRs) and annotated their putative target genes based on long-range chromatin interactions. We revealed that CHIP mutant-driven hypo-DMRs at poised cis-regulatory elements appear to facilitate the CHIP (+)-specific IFN-γ-mediated inflammatory immune response. Our results highlight that the presence of CHIP may increase the susceptibility to hyperinflammation through the reorganization of chromatin architecture, establishing a novel subgroup of severe COVID-19 patients.
Collapse
Affiliation(s)
- Baekgyu Choi
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Chang Kyung Kang
- grid.31501.360000 0004 0470 5905Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seongwan Park
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Dohoon Lee
- grid.31501.360000 0004 0470 5905Bioinformatics Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Andrew J. Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yuji Ko
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Suk-Jo Kang
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Kyuho Kang
- grid.254229.a0000 0000 9611 0917Department of Biology, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Sun Kim
- grid.31501.360000 0004 0470 5905Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Youngil Koh
- grid.31501.360000 0004 0470 5905Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,Genome Opinion Inc, Seoul, 04799 Republic of Korea
| | - Inkyung Jung
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|