1
|
Zhaguparov D, Zhao M, Sekar RV, Woodside MT. Identifying the interactions conferring functional mechanical rigidity on RNase-resistant RNA from Zika virus. Proc Natl Acad Sci U S A 2025; 122:e2417234122. [PMID: 40063803 PMCID: PMC11929477 DOI: 10.1073/pnas.2417234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 03/25/2025] Open
Abstract
Some viruses counter host-cell efforts to digest invading viral RNA by using special structures resistant to host RNases, known as exoribonuclease-resistant RNAs (xrRNAs). xrRNAs typically form an unusual fold with the 5'-end threaded through a ring consisting of a multihelix junction closed by a pseudoknot. By using single-molecule force spectroscopy (SMFS), we previously showed that a Zika virus xrRNA is extremely rigid mechanically, withstanding very high forces, and that this mechanical resistance-not simply the knot-like fold topology-is essential for RNase resistance. Here, we have determined which interactions are most important for generating mechanical rigidity in the Zika virus xrRNA, by systematically mutating tertiary contacts. We found that removing any of the tertiary contacts involving the threaded 5' end was sufficient to abrogate mechanical resistance. In contrast, breaking a single pseudoknot base pair was not sufficient to do so: Two broken pairs were needed. This hierarchy of interaction importance for mechanical rigidity was supported by simulations mapping how mechanical tension was distributed within the xrRNA. For all mutants, RNase resistance varied in lock-step with mechanical resistance, confirming the primary role of mechanical rigidity in xrRNA function. This work reveals which interactions are most important for Zika xrRNA function, with implications for targeting the xrRNA therapeutically.
Collapse
Affiliation(s)
- Daniiar Zhaguparov
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1, Canada
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G2E1, Canada
| |
Collapse
|
2
|
Ghani MU, Zhao G, Pei D, Ma T, Zhao Y, Qu X, Cui H. Inter-species dynamics of non-coding RNAs: Impact on host immunomodulation and pathogen survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105318. [PMID: 39809336 DOI: 10.1016/j.dci.2025.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Non-coding RNAs (ncRNAs) are composed of nucleotides that do not encode proteins but instead serve as guides. It interacts with amino acids at precise genomic sites, influencing chromatin structure and gene expression. These ncRNAs contribute to numerous inter-species dynamics, including those within the vector-host-pathogen triad. Vector-associated ncRNAs are released into hosts to combat the host immune system and sustain arthropod viability. Conversely, hosts may utilize specific ncRNAs as part of their defences to counteract pathogen-carrying vectors. Moreover, pathogens transmitted through vectors' saliva into hosts carry ncRNAs that enhances their virulence. While recent investigations have primarily focused on vector-associated ncRNAs in animal hosts, only a few have explored the functions of pathogen-associated ncRNAs and their role in initiating infections. Our review delves into the historical prospects of ncRNAs, mechanisms by which pathogen-derived ncRNAs influence host-pathogen interactions, regulate gene expression, and evade host defences. Ultimately, it underscores the importance ncRNAs mediated regulatory network in vector-host-pathogen dynamics, offering new strategies to combat vector-borne diseases and enhance public health outcomes.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Dakun Pei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Tao Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuhan Zhao
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaoxuan Qu
- Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Thompson RD, Carbaugh DL, Nielsen JR, Witt CM, Faison EM, Meganck RM, Rangadurai A, Zhao B, Bonin JP, Nicely NI, Marzluff WF, Frank AT, Lazear HM, Zhang Q. Lifetime of ground conformational state determines the activity of structured RNA. Nat Chem Biol 2025:10.1038/s41589-025-01843-1. [PMID: 39939412 DOI: 10.1038/s41589-025-01843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Biomolecules continually sample alternative conformations. Consequently, even the most energetically favored ground conformational state has a finite lifetime. Here, we show that, in addition to the three-dimensional (3D) structure, the lifetime of a ground conformational state determines its biological activity. Using hydrogen-deuterium exchange nuclear magnetic resonance spectroscopy, we found that Zika virus exoribonuclease-resistant RNA (xrRNA) encodes a ground conformational state with a lifetime that is ~105-107 longer than that of canonical base pairs. Mutations that shorten the apparent lifetime of the ground state without affecting its 3D structure decreased exoribonuclease resistance in vitro and impaired virus replication in cells. Additionally, we observed this exceptionally long-lived ground state in xrRNAs from diverse infectious mosquito-borne flaviviruses. These results demonstrate the biological importance of the lifetime of a preorganized ground state and further suggest that elucidating the lifetimes of dominant 3D structures of biomolecules may be crucial for understanding their behaviors and functions.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek L Carbaugh
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua R Nielsen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ciara M Witt
- Department of Biophysics and Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Edgar M Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University, Durham, NC, USA
- NanoVation Therapeutics, Vancouver, British Columbia, Canada
| | - Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan I Nicely
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron T Frank
- Department of Biophysics and Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Arrakis Therapeutics, Waltham, MA, USA.
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Gezelle JG, Korn SM, McDonald JT, Gong Z, Erickson A, Huang CH, Yang F, Cronin M, Kuo YW, Wimberly BT, Steckelberg AL. The pseudoknot structure of a viral RNA reveals a conserved mechanism for programmed exoribonuclease resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628992. [PMID: 39763890 PMCID: PMC11702639 DOI: 10.1101/2024.12.17.628992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class. Here, we present the first structure of a plant-virus xrRNA in its active exoribonuclease-resistant conformation. The xrRNA forms a 9 base pair pseudoknot that creates a knot-like topology similar to that of flavivirus xrRNAs, despite lacking sequence similarity. Biophysical assays confirm a compact pseudoknot structure in solution, and functional studies validate its relevance both in vitro and during infection. Our study reveals how viral RNAs achieve a common functional outcome through highly divergent sequences and identifies the knot-like topology as a defining feature of xrRNAs.
Collapse
Affiliation(s)
- Jeanine G. Gezelle
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sophie M. Korn
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jayden T. McDonald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Chih-Hung Huang
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Feiyue Yang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Matt Cronin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Besson B, Overheul GJ, Wolfinger MT, Junglen S, van Rij RP. Pan-flavivirus analysis reveals sfRNA-independent, 3' UTR-biased siRNA production from an insect-specific flavivirus. J Virol 2024; 98:e0121524. [PMID: 39404457 PMCID: PMC11575252 DOI: 10.1128/jvi.01215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysis in Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'-3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.IMPORTANCEThe Flavivirus genus contains diverse mosquito viruses ranging from insect-specific viruses circulating exclusively in mosquito populations to mosquito-borne viruses that cause disease in humans and animals. Studying the mechanisms of virus replication and antiviral immunity in mosquitoes is important to understand arbovirus transmission and may inform the development of disease control strategies. In insects, RNA interference (RNAi) provides broad antiviral activity and constitutes a major immune response against viruses. Comparing diverse members of the Flavivirus genus, we found that all flaviviruses are targeted by RNAi. However, the insect-specific Kamiti River virus was unique in that small interfering RNAs are highly skewed toward its uniquely long 3' untranslated region. These results suggest that mosquito-specific viruses have evolved unique mechanisms for genome replication and immune evasion.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt University, Berlin Institute of Health, Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Mainan A, Kundu R, Singh RK, Roy S. Magnesium Regulates RNA Ring Dynamics and Folding in Subgenomic Flaviviral RNA. J Phys Chem B 2024; 128:9680-9691. [PMID: 39344128 DOI: 10.1021/acs.jpcb.4c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mosquito-borne flaviviruses including dengue, Zika, yellow fever, and regional encephalitis produce a large amount of short subgenomic flaviviral RNAs during infection. A segment of these RNAs named as xrRNA1 features a multi-pseudoknot (PK)-associated structure, which resists the host cell enzyme (XRN1) from degrading the viral RNA. We investigate how this long-range RNA PK folds in the presence of counterions, specifically in a mix of monovalent (K+) and divalent (Mg2+) salts at physiological concentrations. In this study, we use extensive explicit solvent molecular dynamics (MD) simulations to characterize the RNA ion environment of the folded RNA conformation, as determined by the crystal structure. This allowed us to identify the precise locations of various coordinated RNA-Mg2+ interactions, including inner-sphere/chelated and outer-sphere coordinated Mg2+. Given that RNA folding involves large-scale conformational changes, making it challenging to explore through classical MD simulations, we investigate the folding mechanism of xrRNA1 using an all-atom structure-based RNA model with a hybrid implicit-explicit treatment of the ion environment via the dynamic counterion condensation model, both with and without physiological Mg2+ concentration. The study reveals potential folding pathways for this xrRNA1, which is consistent with the results obtained from optical tweezer experiments. The equilibrium and free energy simulations both capture a dynamic equilibrium between the ring-open and ring-close states of the RNA, driven by a long-range PK interaction. Free energy calculations reveal that with the addition of Mg2+ ions, the equilibrium shifts more toward the ring-close state. A detailed analysis of the free energy pathways and ion-mediated contact probability map highlights the critical role of Mg2+ in bridging G50 and A33. This Mg2+-mediated connection helps form the long-range PK which in turn controls the transition between the ring-open and ring-close states. The study underscores the critical role of Mg2+ in the RNA folding transition, highlighting specific locations of Mg2+ contributing to the stabilization of long-range PK connections likely to enhance the robustness of Xrn1 resistance of flaviviral xrRNAs.
Collapse
Affiliation(s)
- Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rimi Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rishabh K Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Mainan A, Roy S. Dynamic Counterion Condensation Model Decodes Functional Dynamics of RNA Pseudoknot in SARS-CoV-2: Control of Ion-Mediated Pierced Lasso Topology. J Phys Chem Lett 2023; 14:10402-10411. [PMID: 37955626 DOI: 10.1021/acs.jpclett.3c02755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The programmed frameshifting stimulatory element, a promising drug target for COVID-19 treatment, involves a RNA pseudoknot (PK) structure. This RNA PK facilitates frameshifting, enabling RNA viruses to translate multiple proteins from a single mRNA, which is a key strategy for their rapid evolution. Overcoming the challenges of capturing large-scale structural changes of RNA under the influence of a dynamic counterion environment (K+ and Mg2+), the study extended the applications of a newly developed dynamic counterion condensation (DCC) model. DCC simulations reveal potential folding pathways of this RNA PK, supported by the experimental findings obtained using optical tweezers. The study elucidates the pivotal role of Mg2+ ions in crafting a lasso-like RNA topology, a novel RNA motif that governs dynamic transitions between the ring-opened and ring-closed states of the RNA. The pierced lasso component guided by Mg2+-mediated interactions orchestrates inward and outward motion fine-tuning tension on the slippery segment, a critical factor for optimizing frameshifting efficiency.
Collapse
Affiliation(s)
- Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
8
|
Sekar RV, Oliva PJ, Woodside MT. Modelling the structures of frameshift-stimulatory pseudoknots from representative bat coronaviruses. PLoS Comput Biol 2023; 19:e1011124. [PMID: 37205708 DOI: 10.1371/journal.pcbi.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|