1
|
Bighinati A, D'Alessandro S, Felline A, Zeitz C, Bocquet B, Casarini L, Kalatzis V, Meunier I, Fanelli F, Manes G, Marigo V. Differential pathogenetic mechanisms of mutations in helix 2 and helix 6 of rhodopsin. Int J Biol Macromol 2024; 279:135089. [PMID: 39197629 DOI: 10.1016/j.ijbiomac.2024.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.
Collapse
Affiliation(s)
- Andrea Bighinati
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Sara D'Alessandro
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Angelo Felline
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Béatrice Bocquet
- INM, Univ Montpellier, INSERM, CHU Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - Livio Casarini
- University of Modena and Reggio Emilia, Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, via P. Giardini, 1355, 41126 Baggiovara, Modena, Italy
| | - Vasiliki Kalatzis
- INM, Univ Montpellier, INSERM, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Isabelle Meunier
- INM, Univ Montpellier, INSERM, CHU Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - Francesca Fanelli
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy.
| | - Gaël Manes
- INM, Univ Montpellier, INSERM, 80 rue Augustin Fliche, 34091 Montpellier, France.
| | - Valeria Marigo
- University of Modena and Reggio Emilia, Department of Life Sciences, via G. Campi 287, 41125 Modena, Italy.
| |
Collapse
|
2
|
Bighinati A, Adani E, Stanzani A, D’Alessandro S, Marigo V. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention. Front Cell Neurosci 2024; 18:1343544. [PMID: 38370034 PMCID: PMC10869517 DOI: 10.3389/fncel.2024.1343544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Stanzani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| |
Collapse
|
3
|
Wang Y, Li M, Liang W, Shi X, Fan J, Kong R, Liu Y, Zhang J, Chen T, Lu S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput Struct Biotechnol J 2022; 20:628-639. [PMID: 35140883 PMCID: PMC8801358 DOI: 10.1016/j.csbj.2022.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Class B G protein-coupled receptors (GPCRs) are important targets in the treatment of metabolic syndrome and diabetes. Although multiple structures of class B GPCRs-G protein complexes have been elucidated, the detailed activation mechanism of the receptors remains unclear. Here, we combine Gaussian accelerated molecular dynamics simulations and Markov state models (MSM) to investigate the activation mechanism of a canonical class B GPCR, human glucagon receptor-GCGR, including the negative allosteric modulator-bound inactive state, the agonist glucagon-bound active state, and both glucagon- and Gs-bound fully active state. The free-energy landscapes of GCGR show the conformational ensemble consisting of three activation-associated states: inactive, active, and fully active. The structural analysis indicates the high dynamics of GCGR upon glucagon binding with both active and inactive conformations in the ensemble. Significantly, the H8 and TM6 exhibits distinct features from the inactive to the active states. The additional simulations demonstrate the role of H8 in the recruitment of Gs. Gs binding presents a crucial function of stabilizing the glucagon binding site and MSM highlights the absolute requirement of Gs to help the GCGR reach the fully active state. Together, our results reveal the detailed activation mechanism of GCGR from the view of conformational dynamics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchao Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200023, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Felline A, Seeber M, Fanelli F. PSNtools for standalone and web-based structure network analyses of conformational ensembles. Comput Struct Biotechnol J 2022; 20:640-649. [PMID: 35140884 PMCID: PMC8801349 DOI: 10.1016/j.csbj.2021.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
Structure graphs, in which interacting amino acids/nucleotides correspond to linked nodes, represent cutting-edge tools to investigate macromolecular function. The graph-based approach defined as Protein Structure Network (PSN) was initially implemented in the Wordom software and subsequently in the webPSN server. PSNs are computed either on a molecular dynamics (MD) trajectory (PSN-MD) or on a single structure. In the latter case, information on atomic fluctuations is inferred from the Elastic Network Model-Normal Mode Analysis (ENM-NMA) (PSN-ENM). While Wordom performs both PSN-ENM and PSN-MD analyses but without output post-processing, the webPSN server performs only single-structure PSN-EMN but assisting the user in input setup and output analysis. Here we release for the first time the standalone software PSNtools, which allows calculation and post-processing of PSN analyses carried out either on single structures or on conformational ensembles. Relevant unique and novel features of PSNtools are either comparisons of two networks or computations of consensus networks on sets of homologous/analogous macromolecular structures or conformational ensembles. Network comparisons and consensus serve to infer differences in functionally different states of the same system or network-based signatures in groups of bio-macromolecules sharing either the same functionality or the same fold. In addition to the new software, here we release also an updated version of the webPSN server, which allows performing an interactive graphical analysis of PSN-MD, following the upload of the PSNtools output. PSNtools, the auxiliary binary version of Wordom software, and the WebPSN server are freely available at http://webpsn.hpc.unimo.it/wpsn3.php.
Collapse
|