1
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
2
|
Escaray FJ, Felipo-Benavent A, Antonelli CJ, Balaguer B, Lopez-Gresa MP, Vera P. Plant triterpenoid saponins function as susceptibility factors to promote the pathogenicity of Botrytis cinerea. MOLECULAR PLANT 2024; 17:1073-1089. [PMID: 38807367 DOI: 10.1016/j.molp.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
The gray mold fungus Botrytis cinerea is a necrotrophic pathogen that causes diseases in hundreds of plant species, including high-value crops. Its polyxenous nature and pathogenic success are due to its ability to perceive host signals in its favor. In this study, we found that laticifer cells of Euphorbia lathyris are a source of susceptibility factors required by B. cinerea to cause disease. Consequently, poor-in-latex (pil) mutants, which lack laticifer cells, show full resistance to this pathogen, whereas lot-of-latex mutants, which produce more laticifer cells, are hypersusceptible. These S factors are triterpenoid saponins, which are widely distributed natural products of vast structural diversity. The downregulation of laticifer-specific oxydosqualene cyclase genes, which encode the first committed step enzymes for triterpene and, therefore, saponin biosynthesis, conferred disease resistance to B. cinerea. Likewise, the Medicago truncatula lha-1 mutant, compromised in triterpenoid saponin biosynthesis, showed enhanced resistance. Interestingly, the application of different purified triterpenoid saponins pharmacologically complemented the disease-resistant phenotype of pil and hla-1 mutants and enhanced disease susceptibility in different plant species. We found that triterpenoid saponins function as plant cues that signal transcriptional reprogramming in B. cinerea, leading to a change in its growth habit and infection strategy, culminating in the abundant formation of infection cushions, the multicellular appressoria apparatus dedicated to plant penetration and biomass destruction in B. cinerea. Taken together, these results provide an explanation for how plant triterpenoid saponins function as disease susceptibility factors to promote B. cinerea pathogenicity.
Collapse
Affiliation(s)
- Francisco J Escaray
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Amelia Felipo-Benavent
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Cristian J Antonelli
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Begoña Balaguer
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Maria Pilar Lopez-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, acceso G, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology. Int J Mol Sci 2023; 24:8705. [PMID: 37240051 PMCID: PMC10218500 DOI: 10.3390/ijms24108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
Collapse
Affiliation(s)
- Gabriel Pérez-Lara
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Consuelo Olivares-Yañez
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luis F. Larrondo
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
4
|
The Botrytis cinerea Gene Expression Browser. J Fungi (Basel) 2023; 9:jof9010084. [PMID: 36675905 PMCID: PMC9861337 DOI: 10.3390/jof9010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
Collapse
|
5
|
Rojas V, Salinas F, Romero A, Larrondo LF, Canessa P. Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains. J Fungi (Basel) 2022; 8:486. [PMID: 35628742 PMCID: PMC9144814 DOI: 10.3390/jof8050486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein-protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1PAS∆) or BcWCL2 (BcWCL2PAS∆) severely impairs the interaction between these proteins. Interestingly, the BcWCL1PAS∆ protein shows a blue-light response and interacts with BcWCL2 or BcWCL2PAS∆ upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1PAS∆ respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein-protein interactions occurring between the core elements of the B. cinerea circadian clock.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Francisco Salinas
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrés Romero
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Paulo Canessa
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|