1
|
Rabuffo C, Schmidt MR, Yadav P, Tong P, Carloni R, Barcons-Simon A, Cosentino RO, Krebs S, Matthews KR, Allshire RC, Siegel TN. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes. Nat Commun 2024; 15:10716. [PMID: 39715762 DOI: 10.1038/s41467-024-55285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs). With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization. While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs. These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei.
Collapse
Affiliation(s)
- Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Prateek Yadav
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Keith R Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Tarasovetc EV, Sissoko GB, Maiorov A, Mukhina AS, Ataullakhanov FI, Cheeseman IM, Grishchuk EL. Binding Site Maturation Modulated by Molecular Density Underlies Ndc80 Binding to Kinetochore Receptor CENP-T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581584. [PMID: 38464265 PMCID: PMC10925139 DOI: 10.1101/2024.02.25.581584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive. Here, we use quantitative in vitro assays to reveal two distinct mechanisms driving this behavior. First, Ndc80 binding to CENP-T is a two-step process: initially, Ndc80 molecules rapidly associate and dissociate from disordered N-terminal binding sites on CENP-T. Over time, these sites undergo maturation, resulting in stronger Ndc80 retention. Second, we find that this maturation transition is regulated by a kinetic barrier that is sensitive to the molecular environment. In the soluble phase, binding site maturation is slow, but within CENP-T clusters, this process is markedly accelerated. Notably, the two Ndc80 binding sites in human CENP-T exhibit distinct maturation rates and environmental sensitivities, which correlate with their different amino-acid content and predicted binding conformations. This clustering-induced maturation is evident in dividing human cells, suggesting a distinct regulatory entry point for controlling kinetochore assembly. We propose that the tunable acceleration of binding site maturation by molecular crowding may represent a general mechanism for promoting the formation of macromolecular structures.
Collapse
Affiliation(s)
- Ekaterina V. Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Gunter B. Sissoko
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Aleksandr Maiorov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Anna S. Mukhina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Fazoil I. Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Inagaki T, Kumar A, Komaki S, Nakajima KI, Izumiya Y. An atlas of chromatin landscape in KSHV-infected cells during de novo infection and reactivation. Virology 2024; 597:110146. [PMID: 38909515 DOI: 10.1016/j.virol.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA.
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
4
|
Melkus G, Sizovs A, Rucevskis P, Silina S. Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks. J Comput Biol 2024; 31:589-596. [PMID: 38768423 DOI: 10.1089/cmb.2024.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.
Collapse
Affiliation(s)
- Gatis Melkus
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Andrejs Sizovs
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Peteris Rucevskis
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Sandra Silina
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| |
Collapse
|
5
|
Wang W, Ye Y, Gao L. Statistical modeling and significance estimation of multi-way chromatin contacts with HyperloopFinder. Brief Bioinform 2024; 25:bbae341. [PMID: 39003726 PMCID: PMC11246602 DOI: 10.1093/bib/bbae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Recent advances in chromatin conformation capture technologies, such as SPRITE and Pore-C, have enabled the detection of simultaneous contacts among multiple chromatin loci. This has made it possible to investigate the cooperative transcriptional regulation involving multiple genes and regulatory elements at the resolution of a single molecule. However, these technologies are unavoidably subject to the random polymer looping effect and technical biases, making it challenging to distinguish genuine regulatory relationships directly from random polymer interactions. Here, we present HyperloopFinder, a method for identifying regulatory multi-way chromatin contacts (hyperloops) by jointly modeling the random polymer looping effect and technical biases to estimate the statistical significance of multi-way contacts. The results show that our model can accurately estimate the expected interaction frequency of multi-way contacts based on the distance distribution of pairwise contacts, revealing that most multi-way contacts can be formed by randomly linking the pairwise contacts adjacent to each other. Moreover, we observed the spatial colocalization of the interaction sites of hyperloops from image-based data. Our results also revealed that hyperloops can function as scaffolds for the cooperation among multiple genes and regulatory elements. In summary, our work contributes novel insights into higher-order chromatin structures and functions and has the potential to enhance our understanding of transcriptional regulation and other cellular processes.
Collapse
Affiliation(s)
- Weibing Wang
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yusen Ye
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lin Gao
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Demmerle J, Hao S, Cai D. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus 2023; 14:2213551. [PMID: 37218279 PMCID: PMC10208215 DOI: 10.1080/19491034.2023.2213551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Transcription is the fundamental process of gene expression, which in eukaryotes occurs within the complex physicochemical environment of the nucleus. Decades of research have provided extreme detail in the molecular and functional mechanisms of transcription, but the spatial and genomic organization of transcription remains mysterious. Recent discoveries show that transcriptional components can undergo phase separation and create distinct compartments inside the nucleus, providing new models through which to view the transcription process in eukaryotes. In this review, we focus on transcriptional condensates and their phase separation-like behaviors. We suggest differentiation between physical descriptions of phase separation and the complex and dynamic biomolecular assemblies required for productive gene expression, and we discuss how transcriptional condensates are central to organizing the three-dimensional genome across spatial and temporal scales. Finally, we map approaches for therapeutic manipulation of transcriptional condensates and ask what technical advances are needed to understand transcriptional condensates more completely.
Collapse
Affiliation(s)
- Justin Demmerle
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siyuan Hao
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Hu W, Jing H, Fu W, Wang Z, Zhou J, Zhang N. Conversion to Trimolecular G-Quadruplex by Spontaneous Hoogsteen Pairing-Based Strand Displacement Reaction between Bimolecular G-Quadruplex and Double G-Rich Probes. J Am Chem Soc 2023; 145:18578-18590. [PMID: 37553999 DOI: 10.1021/jacs.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human β2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.
Collapse
Affiliation(s)
- Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zengrong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
8
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|