1
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Scarponi C, La Rovere RML, Stoklund Dittlau K, Bultynck G, Sampaolesi M, Schoenberger M, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Novel Far-Red Fluorescent 1,4-Dihydropyridines for L-Type Calcium Channel Imaging. J Med Chem 2024; 67:18038-18052. [PMID: 39388369 DOI: 10.1021/acs.jmedchem.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Upregulation of L-type calcium channels (LTCCs) is implicated in a range of cardiovascular and neurological disorders. Therefore, the development of toolboxes that unlock fast imaging protocols in live cells is coveted. Herein, we report a library of first-in-class far-red small-molecule-based fluorescent ligands (FluoDiPines), able to target LTCCs. All fluorescent ligands were evaluated in whole-cell patch-clamp and live-cell Ca2+ imaging whereby FluoDiPine 6 was found to be the best candidate for live-cell fluorescence imaging. Low concentration of FluoDiPine 6 (50 nM) and a quick labeling protocol (5 min) are successfully applied to fixed and live cells to image LTCCs with good specificity.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5, box 602 Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5-box 602 Herestraat 49, 3000 Leuven, Belgium
| | - Carlotta Scarponi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo Miramon, 20014 San Sebastian, Guipuzcoa, Spain
| | - Rita M L La Rovere
- Dep. Cellular & Molecular Medicine, KU Leuven, Lab. Molecular & Cellular Signaling, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Geert Bultynck
- Dep. Cellular & Molecular Medicine, KU Leuven, Lab. Molecular & Cellular Signaling, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Matthias Schoenberger
- Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5, box 602 Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5-box 602 Herestraat 49, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wim M De Borggraeve
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Ermal Ismalaj
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo Miramon, 20014 San Sebastian, Guipuzcoa, Spain
| |
Collapse
|
2
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
3
|
Hwang JW, Kim J, Park JH, Nam J, Jang JY, Jo A, Lee HJ, Hoe HS. Felodipine attenuates neuroinflammatory responses and tau hyperphosphorylation through JNK/P38 signaling in tau-overexpressing AD mice. Mol Brain 2024; 17:62. [PMID: 39223564 PMCID: PMC11367747 DOI: 10.1186/s13041-024-01137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
We previously demonstrated that felodipine, an L-type calcium channel blocker, inhibits LPS-mediated neuroinflammatory responses in BV2 microglial cells and wild-type mice. However, the effects of felodipine on tau pathology, a hallmark of Alzheimer's disease (AD), have not been explored yet. Therefore, in the present study, we determined whether felodipine affects neuroinflammation and tau hyperphosphorylation in 3-month-old P301S transgenic mice (PS19), an early phase AD mice model for tauopathy. Felodipine administration decreased tauopathy-mediated microglial activation and NLRP3 expression in PS19 mice but had no effect on tauopathy-associated astrogliosis. In addition, felodipine treatment significantly reduced tau hyperphosphorylation at S202/Thr205 and Thr212/Ser214 residues via inhibiting JNK/P38 signaling in PS19 mice. Collectively, our results suggest that felodipine significantly ameliorates tau hyper-phosphorylation and tauopathy-associated neuroinflammatory responses in AD mice model for tauopathy and could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Jeong-Woo Hwang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jeongha Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Jinhan Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Ji-Yeong Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Aran Jo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea
| | - Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea.
- AI-Based Neurodevelopmental Diseases Digital Therapeutics Group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea.
| |
Collapse
|
4
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Hu Y, Zhao Z, Xu F, Ren X, Liu M, Zheng Z, Wang Q. Transcriptome and Animal Model Integration Reveals Inhibition of Calcium Homeostasis-Associated Gene ITPKB Alleviates Amyloid Plaque Deposition. J Mol Neurosci 2024; 74:42. [PMID: 38613644 DOI: 10.1007/s12031-024-02221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD. Additionally, the immunofluorescence technique was employed to assess the impact of pharmacological inhibition of ITPKB on the amyloid-β (Aβ) plaque deposition in APP/PS1 mice. This article's further exploration of calcium homeostasis-related genes has propelled the validation of the calcium homeostasis theory in AD.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zijun Zhao
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Hebei Provincial Chest Hospital, Shijiazhuang, Hebei, 050047, China
| | - Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Xiaoqin Ren
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Menglin Liu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
| | - Zilei Zheng
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China
- Department of Anesthesiology, Zhangjiakou Fourth Hospital, Zhangjiakou, Hebei, 075000, China
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Hebei, 050051, China.
| |
Collapse
|
6
|
Crossley CA, Omoluabi T, Torraville SE, Duraid S, Maziar A, Hasan Z, Rajani V, Ando K, Hell JW, Yuan Q. Hippocampal hyperphosphorylated tau-induced deficiency is rescued by L-type calcium channel blockade. Brain Commun 2024; 6:fcae096. [PMID: 38562310 PMCID: PMC10984573 DOI: 10.1093/braincomms/fcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/07/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aging and Alzheimer's disease are associated with chronic elevations in neuronal calcium influx via L-type calcium channels. The hippocampus, a primary memory encoding structure in the brain, is more vulnerable to calcium dysregulation in Alzheimer's disease. Recent research has suggested a link between L-type calcium channels and tau hyperphosphorylation. However, the precise mechanism of L-type calcium channel-mediated tau toxicity is not understood. In this study, we seeded a human tau pseudophosphorylated at 14 amino acid sites in rat hippocampal cornu ammonis 1 region to mimic soluble pretangle tau. Impaired spatial learning was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats as early as 1-3 months and worsened at 9-10 months post-infusion. Rats infused with wild-type human tau exhibited milder behavioural deficiency only at 9-10 months post-infusion. No tangles or plaques were observed in all time points examined in both human tau pseudophosphorylated at 14 amino acid sites and human tau-infused brains. However, human tau pseudophosphorylated at 14 amino acid sites-infused hippocampus exhibited a higher amount of tau phosphorylation at S262 and S356 than the human tau-infused rats at 3 months post-infusion, paralleling the behavioural deficiency observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Neuroinflammation indexed by increased Iba1 in the cornu ammonis 1 was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 but not 9 months post-infusion. Spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 months post-infusion was paralleled by decreased neuronal excitability, impaired NMDA receptor-dependent long-term potentiation and augmented L-type calcium channel-dependent long-term potentiation at the cornu ammonis 1 synapses. L-type calcium channel expression was elevated in the soma of the cornu ammonis 1 neurons in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Chronic L-type calcium channel blockade with nimodipine injections for 6 weeks normalized neuronal excitability and synaptic plasticity and rescued spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats. The early onset of L-type calcium channel-mediated pretangle tau pathology and rectification by nimodipine in our model have significant implications for preclinical Alzheimer's disease prevention and intervention.
Collapse
Affiliation(s)
- Chelsea A Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Sarah Duraid
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Aida Maziar
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Zia Hasan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Vishaal Rajani
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
7
|
Çakır M, Saçmacı H. The relationship of salusins with Parkinson's Disease, Alzheimer's Disease, and acute ischemic stroke: A preliminary study. Neurosci Lett 2024; 824:137683. [PMID: 38350537 DOI: 10.1016/j.neulet.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neuroinflammation, oxidative stress, and apoptosis play important roles in the pathophysiology of Alzheimer's Disease (AD), Parkinson's Disease (PD), and Acute Ischemic Stroke (AIS). Salusin-α and salusin-β peptides, which were shown to be present in many tissues, including the central nervous system, were also shown to be associated with apoptosis, inflammation, and oxidative stress. In the present study, the relationship between Salusin-α and salusin-β peptides and AD, PD, and AIS were investigated. A total of 179 people were included in the present study, including 46 AD, 44 PD, 42 AIS, and 47 controls. Plasma Salusin-α and salusin-β levels were measured with the ELISA Method. The plasma salusin-β levels of AD, PD, and AIS patients were lower than the control group at significant levels (p < 0.05). It was also found that there were correlations between salusin-α and salusin-β levels and age, triglyceride, LDL-c, total cholesterol, and hemoglobin levels. In this study, we found that salusin- β, an endogenous neuropeptide, was associated with AD, PD and AIS. The low level of salusin-β in these diseases in which neuronal damage occurs may be related to the neuroprotective properties of this endogenous peptide. Further studies are needed to fully understand the relationship between salusin-β and the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Murat Çakır
- Department of Physiology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| | - Hikmet Saçmacı
- Department of Neurology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| |
Collapse
|
8
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
9
|
Tikhonov DB, Zhorov BS. Mechanisms of dihydropyridine agonists and antagonists in view of cryo-EM structures of calcium and sodium channels. J Gen Physiol 2023; 155:e202313418. [PMID: 37728574 PMCID: PMC10510735 DOI: 10.1085/jgp.202313418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Opposite effects of 1,4-dihydropyridine (DHP) agonists and antagonists on the L-type calcium channels are a challenging problem. Cryo-EM structures visualized DHPs between the pore-lining helices S6III and S6IV in agreement with published mutational data. However, the channel conformations in the presence of DHP agonists and antagonists are virtually the same, and the mechanisms of the ligands' action remain unclear. We docked the DHP agonist S-Bay k 8644 and antagonist R-Bay k 8644 in Cav1.1 channel models with or without π-bulges in helices S6III and S6IV. Cryo-EM structures of the DHP-bound Cav1.1 channel show a π-bulge in helix S6III but not in S6IV. The antagonist's hydrophobic group fits into the hydrophobic pocket formed by residues in S6IV. The agonists' polar NO2 group is too small to fill up the pocket. A water molecule could sterically fit into the void space, but its contacts with isoleucine in helix S6IV (motif INLF) would be unfavorable. In a model with π-bulged S6IV, this isoleucine turns away from the DHP molecule and its position is occupied by the asparagine from the same motif INLF. The asparagine provides favorable contacts for the water molecule at the agonist's NO2 group but unfavorable contacts for the antagonist's methoxy group. In our models, the DHP antagonist stabilizes entirely α-helical S6IV. In contrast, the DHP agonist stabilizes π-bulged helix S6IV whose C-terminal part turned and rearranged the activation-gate region. This would stabilize the open channel. Thus, agonists, but not antagonists, would promote channel opening by stabilizing π-bulged helix S6IV.
Collapse
Affiliation(s)
- Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S. Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
10
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|