1
|
Zang Z, Yin Y, Liu C, Zhu Q, Huang X, Li H, Yang R. IL21R hypomethylation as a biomarker for distinguishing benign and malignant breast tumours. Epigenetics 2024; 19:2352683. [PMID: 38723244 PMCID: PMC11086039 DOI: 10.1080/15592294.2024.2352683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.
Collapse
Affiliation(s)
- Zishan Zang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuandong Huang
- Department of Thyroid and Breast Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Hong Li
- Department of Pathology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Shen HT, Hung CS, Davis C, Su CM, Liao LM, Shih HM, Lee KD, Ansar M, Lin RK. Hypermethylation of the Gene Body in SRCIN1 Is Involved in Breast Cancer Cell Proliferation and Is a Potential Blood-Based Biomarker for Early Detection and a Poor Prognosis. Biomolecules 2024; 14:571. [PMID: 38785978 PMCID: PMC11118508 DOI: 10.3390/biom14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer is a leading cause of cancer mortality in women worldwide. Using the Infinium MethylationEPIC BeadChip, we analyzed plasma sample methylation to identify the SRCIN1 gene in breast cancer patients. We assessed SRCIN1-related roles and pathways for their biomarker potential. To verify the methylation status, quantitative methylation-specific PCR (qMSP) was performed on genomic DNA and circulating cell-free DNA samples, and mRNA expression analysis was performed using RT‒qPCR. The results were validated in a Western population; for this analysis, the samples included plasma samples from breast cancer patients from the USA and from The Cancer Genome Atlas (TCGA) cohort. To study the SRCIN1 pathway, we conducted cell viability assays, gene manipulation and RNA sequencing. SRCIN1 hypermethylation was identified in 61.8% of breast cancer tissues from Taiwanese patients, exhibiting specificity to this malignancy. Furthermore, its presence correlated significantly with unfavorable 5-year overall survival outcomes. The levels of methylated SRCIN1 in the blood of patients from Taiwan and the USA correlated with the stage of breast cancer. The proportion of patients with high methylation levels increased from 0% in healthy individuals to 63.6% in Stage 0, 80% in Stage I and 82.6% in Stage II, with a sensitivity of 78.5%, an accuracy of 90.3% and a specificity of 100%. SRCIN1 hypermethylation was significantly correlated with increased SRCIN1 mRNA expression (p < 0.001). Knockdown of SRCIN1 decreased the viability of breast cancer cells. SRCIN1 silencing resulted in the downregulation of ESR1, BCL2 and various cyclin protein expressions. SRCIN1 hypermethylation in the blood may serve as a noninvasive biomarker, facilitating early detection and prognosis evaluation, and SRCIN1-targeted therapies could be used in combination regimens for breast cancer patients.
Collapse
Affiliation(s)
- Hsieh-Tsung Shen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
| | - Chin-Sheng Hung
- EG BioMed US Inc., Covina, CA 91722, USA;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Clilia Davis
- International Master Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
| | - Hsiu-Ming Shih
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
| | - Kuan-Der Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ruo-Kai Lin
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110301, Taiwan; (H.-T.S.); (H.-M.S.); (K.-D.L.)
- EG BioMed US Inc., Covina, CA 91722, USA;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Pharmacognosy, Ph.D. Program in Drug Discovery and Development Industry, Masters Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Clinical Trial Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H. TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets. Int J Mol Sci 2023; 25:272. [PMID: 38203443 PMCID: PMC10779134 DOI: 10.3390/ijms25010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.
Collapse
Affiliation(s)
- Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C. P. 44340, Jalisco, Mexico;
| | - Hober Nelson Núñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C. P. 04510, Mexico;
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| |
Collapse
|
4
|
Li J, Zhou X, Li L, Ji L, Li J, Qu Y, Wang Z, Zhao Y, Zhang J, Liang F, Liu J, Gu W, Yang R, Ma F, Dai L. The association between CTSZ methylation in peripheral blood and breast cancer in Chinese women. Front Oncol 2023; 13:1148635. [PMID: 37274256 PMCID: PMC10233099 DOI: 10.3389/fonc.2023.1148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose Previous studies have shown that DNA methylation in peripheral blood may be associated with breast cancer (BC). To explore the association between the methylation level of the Cathepsin Z (CTSZ) gene in peripheral blood and BC, we conducted a case-control study in the Chinese population. Methods Peripheral blood samples were collected from 567 BC cases, 635 healthy controls, and 303 benign breast disease (BBD) cases. DNA extraction and bisulfite-specific PCR amplification were performed for all samples. The methylation levels of seven sites of the CTSZ gene were quantitatively determined by Mass spectrometry. The odds ratios (ORs) of CpG sites were evaluated for BC risk using per 10% reduction and quartiles analyses by logistic regression. Results Our analysis showed that five out of the seven CpG sites exhibited significant associations with hypomethylation of CTSZ and BC, compared to healthy controls. The highest OR was for Q2 of CTSZ_CpG_1 (OR: 1.62, P=0.006), particularly for early-stage breast cancer in the case of per 10% reduction of CTSZ_CpG_1 (OR: 1.20, P=0.003). We also found that per 10% reduction of CTSZ_CpG_5 (OR: 1.39, P=0.004) and CTSZ_CpG_7,8 (OR: 1.35, P=0.005) were associated with increased BC risk. Our study also revealed that four out of seven CpG sites were linked to increased BC risk in women under 50 years of age, compared to healthy controls. The highest OR was for per 10% reduction of CTSZ_CpG_1 (OR: 1.47, P<0.001). Additionally, we found that BC exhibited lower methylation levels than BBD at CTSZ_CpG_4 (OR for Q1: 2.18, P<0.001) and CTSZ_CpG_7,8 (OR for Q1: 2.01, P=0.001). Furthermore, we observed a correlation between methylation levels and tumor stage, ER, and HER2 status in BC patients. Conclusion Overall, our findings suggest that altered CTSZ methylation levels in peripheral blood may be associated with breast cancer, particularly in young women, and may serve as a potential biomarker for early-stage BC.
Collapse
Affiliation(s)
- Jinyu Li
- School of Basic Medical Sciences & The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiajie Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longtao Ji
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqi Li
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunhui Qu
- Department of Clinical Laboratory in the First Affiliated Hospital & Key Clinical Laboratory of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Wang
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Feifei Liang
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liping Dai
- School of Basic Medical Sciences & The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Kleinbielen T, Olasagasti F, Azcarate D, Beristain E, Viguri-Díaz A, Guerra-Merino I, García-Orad Á, de Pancorbo MM. In silico identification and in vitro expression analysis of breast cancer-related m 6A-SNPs. Epigenetics 2022; 17:2144-2156. [PMID: 35971775 PMCID: PMC9665143 DOI: 10.1080/15592294.2022.2111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Research on m6A-associated SNPs (m6A-SNPs) has emerged recently due to their possible critical roles in many key biological processes. In this sense, several investigations have identified m6A-SNPs in different diseases. In order to gain a more complete understanding of the role that m6A-SNPs can play in breast cancer, we performed an in silico analysis to identify the m6A-SNPs associated with breast cancer and to evaluate their possible effects. For this purpose, we downloaded SNPs related to breast cancer and a list of m6A-SNPs from public databases in order to identify which ones appear in both. Subsequently, we assessed the identified m6A-SNPs in silico by expression quantitative trait loci (eQTL) analysis and differential gene expression analysis. We genotyped the m6A-SNPs found in the in silico analysis in 35 patients with breast cancer, and we carried out a gene expression analysis experimentally on those that showed differences. Our results identified 981 m6A-SNPs related to breast cancer. Four m6A-SNPs showed an eQTL effect and only three were in genes that presented an altered gene expression. When the three m6A-SNPs were evaluated in the tissue sample of our breast cancer patients, only the m6A-SNP rs76563149 located in ZNF354A gene presented differences in allele frequencies and a low gene expression in breast cancer tissues, especially in luminal B HER2+ subtype. Future investigations of these m6A-SNPs should expand the study in different ethnic groups and increase the sample sizes to test their association with breast cancer and elucidate their molecular function.
Collapse
Affiliation(s)
- Tamara Kleinbielen
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Felix Olasagasti
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
| | - Daniel Azcarate
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| | - Elena Beristain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Molecular Genetics Laboratory, Araba University Hospital, Osakidetza Basque Health Service. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Amparo Viguri-Díaz
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - Isabel Guerra-Merino
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
- Pathology Department, Araba University Hospital. Postal code: 01009. Vitoria-Gasteiz, Araba, Spain
| | - África García-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- BioCruces Bizkaia Health Research Institute. Postal code: 48903. Barakaldo, Bizkaia, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Postal code: 01006. Vitoria-Gasteiz, Araba, Spain
- Department of Zoology and Animal Biology. University of the Basque Country (UPV/EHU). Postal code: 48940. Leioa, Bizkaia, Spain
- Bioaraba Health Research Institute. Postal Code: 01009, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
6
|
Yin Y, Lei S, Li L, Yang X, Yin Q, Xu T, Zhou W, Li H, Gu W, Ma F, Yang R, Zhang Z. RPTOR methylation in the peripheral blood and breast cancer in the Chinese population. Genes Genomics 2021; 44:435-443. [PMID: 34767153 DOI: 10.1007/s13258-021-01182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Altered regulatory-associated protein of mTOR, complex 1 (RPTOR) methylation levels in peripheral blood was originally discovered as breast cancer (BC)-associated risk factor in Caucasians. OBJECTIVE To explore the relationship between RPTOR methylation and BC in the Chinese population, we conducted two independent case-control studies. METHODS Peripheral blood samples were collected from a total of 333 sporadic BC cases and 378 healthy female controls for the DNA extraction and bisulfite-specific PCR amplification. Mass spectrometry was applied to quantitatively measure the levels of methylation. The logistic regression, Spearman's rank correlation, and Non-parametric tests were used for the statistical analyses. RESULTS In our study, we found an association between BC and RPTOR_CpG_4 hypomethylation in the general population (per-10% of methylation, OR 1.29, P = 0.012), and a weak association between BC and RPTOR_CpG_8 hypomethylation in the women with older age (per-10% of methylation, OR 2.34, P = 0.006). We also identified age as a confounder for the change of RPTOR methylation patterns, especially at RPTOR_CpG_4, which represented differential methylation comparing age groups especially in the BC cases (age < 50 years vs age ≥ 50 years by Mann-Whitney U test, P < 0.0001 for BC cases and P = 0.079 for controls). CONCLUSION Our study validated the association between hypomethylation of RPTOR and BC risk in the Chinese population also with weak effect and mostly for postmenopausal women. In addition, our findings provided novel insight for the regulation of DNA methylation upon aging or the change of hormone levels.
Collapse
Affiliation(s)
- Yifei Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Shuifang Lei
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqin Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wenjie Zhou
- Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Pathology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
8
|
Vietri MT, D'Elia G, Benincasa G, Ferraro G, Caliendo G, Nicoletti GF, Napoli C. DNA methylation and breast cancer: A way forward (Review). Int J Oncol 2021; 59:98. [PMID: 34726251 DOI: 10.3892/ijo.2021.5278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 11/05/2022] Open
Abstract
The current management of breast cancer (BC) lacks specific non‑invasive biomarkers able to provide an early diagnosis of the disease. Epigenetic‑sensitive signatures are influenced by environmental exposures and are mediated by direct molecular mechanisms, mainly guided by DNA methylation, which regulate the interplay between genetic and non‑genetic risk factors during cancerogenesis. The inactivation of tumor suppressor genes due to promoter hypermethylation is an early event in carcinogenesis. Of note, targeted tumor suppressor genes are frequently hypermethylated in patient‑derived BC tissues and peripheral blood biospecimens. In addition, epigenetic alterations in triple‑negative BC, as the most aggressive subtype, have been identified. Thus, detecting both targeted and genome‑wide DNA methylation changes through liquid‑based assays appears to be a useful clinical strategy for early detection, more accurate risk stratification and a personalized prediction of therapeutic response in patients with BC. Of note, the DNA methylation profile may be mapped by isolating the circulating tumor DNA from the plasma as a more accessible biospecimen. Furthermore, the sensitivity to treatment with chemotherapy, hormones and immunotherapy may be altered by gene‑specific DNA methylation, suggesting novel potential drug targets. Recently, the use of epigenetic drugs administered alone and/or with anticancer therapies has led to remarkable results, particularly in patients with BC resistant to anticancer treatment. The aim of the present review was to provide an update on DNA methylation changes that are potentially involved in BC development and their putative clinical utility in the fields of diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanna D'Elia
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Gemma Caliendo
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| |
Collapse
|
9
|
Mendaza S, Guerrero-Setas D, Monreal-Santesteban I, Ulazia-Garmendia A, Cordoba Iturriagagoitia A, De la Cruz S, Martín-Sánchez E. A DNA Methylation-Based Gene Signature Can Predict Triple-Negative Breast Cancer Diagnosis. Biomedicines 2021; 9:1394. [PMID: 34680511 PMCID: PMC8533184 DOI: 10.3390/biomedicines9101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer (BC) subtype and lacks targeted treatment. It is diagnosed by the absence of immunohistochemical expression of several biomarkers, but this method still displays some interlaboratory variability. DNA methylome aberrations are common in BC, thereby methylation profiling could provide the identification of accurate TNBC diagnosis biomarkers. Here, we generated a signature of differentially methylated probes with class prediction ability between 5 non-neoplastic breast and 7 TNBC tissues (error rate = 0.083). The robustness of this signature was corroborated in larger cohorts of additional 58 non-neoplastic breast, 93 TNBC, and 150 BC samples from the Gene Expression Omnibus repository, where it yielded an error rate of 0.006. Furthermore, we validated by pyrosequencing the hypomethylation of three out of 34 selected probes (FLJ43663, PBX Homeobox 1 (PBX1), and RAS P21 protein activator 3 (RASA3) in 51 TNBC, even at early stages of the disease. Finally, we found significantly lower methylation levels of FLJ43663 in cell free-DNA from the plasma of six TNBC patients than in 15 healthy donors. In conclusion, we report a novel DNA methylation signature with potential predictive value for TNBC diagnosis.
Collapse
Affiliation(s)
- Saioa Mendaza
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (D.G.-S.); (I.M.-S.); (A.U.-G.)
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (D.G.-S.); (I.M.-S.); (A.U.-G.)
- Department of Pathology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain;
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (D.G.-S.); (I.M.-S.); (A.U.-G.)
| | - Ane Ulazia-Garmendia
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (D.G.-S.); (I.M.-S.); (A.U.-G.)
| | | | - Susana De la Cruz
- Department of Medical Oncology, Complejo Hospitalario de Navarra (CHN), Irunlarrea 3, 31008 Pamplona, Spain;
| | - Esperanza Martín-Sánchez
- Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain; (D.G.-S.); (I.M.-S.); (A.U.-G.)
| |
Collapse
|
10
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
11
|
Al-Mulhim F, Alqosaibi AI, Al-Muhnna A, Farid K, Abdel-Ghany S, Rizk H, Prince AB, Isichei A, Sabit H. CRISPR/Cas9-mediated activation of CDH1 suppresses metastasis of breast cancer in rats. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Pei Y, Lou X, Li K, Xu X, Guo Y, Xu D, Yang Z, Xu D, Cui W, Zhang D. Peripheral Blood Leukocyte N6-methyladenosine is a Noninvasive Biomarker for Non-small-cell Lung Carcinoma. Onco Targets Ther 2020; 13:11913-11921. [PMID: 33239892 PMCID: PMC7682600 DOI: 10.2147/ott.s267344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background N6-methyladenosine (m6A) triggers a new layer of epi-transcription. However, the potential noninvasive screening and diagnostic value of peripheral blood m6A for cancer are still unknown. Here, we intend to investigate whether leukocyte m6A can be a novel biomarker for non-small-cell lung cancer (NSCLC). Materials and Methods Peripheral blood was collected from 119 NSCLC patients and 74 age-matched healthy controls. Total RNA was isolated from leukocytes for m6A measurement, and clinical information of participants was reviewed. The sensitivity, specificity, and area under the curve (AUC) of m6A for cancer diagnosis were evaluated by the receiver-operating characteristic (ROC) curve analysis. Flow cytometry and the Human Protein Atlas (HPA) database were used to characterize m6A in leukocyte differentials. Pearson's correlation was applied to indicate the relationship between m6A level and hematology variables. qPCR and bioinformatic analysis were used to identity the expression of m6A regulators in leukocyte. Results Leukocyte m6A was significantly elevated in 119 NSCLC patients compared with 74 healthy controls (P<0.001). We did not find significant association between m6A and age or gender. Elevated m6A level in NSCLC was associated with tumor stage (P<0.05) and tumor differentiation (P<0.05), and was significantly reduced after surgery (P<0.01). ROC curve analysis revealed that leukocyte m6A could significantly discriminate patients with lung adenocarcinoma (LUAD) (AUC=0.736, P<0.001) and lung squamous cell carcinoma (LUSC) (AUC=0.963, P<0.001) from healthy individuals. m6A displayed superior sensitivity (100%) and specificity (85.7%) for LUSC than squamous cell carcinoma (SCC) antigen and cytokeratin fragment 211 (Cyfra211). Flow cytometry analysis showed m6A modification was mainly localized on T cells and monocytes among leukocyte differentials. Leukocyte m6A was positively correlated with the number of lymphocytes and negatively correlated with monocytes in NSCLC but not in healthy controls. qPCR and bioinformatic analysis showed that elevated leukocyte m6A in NSCLC was caused by upregulated methyltransferase complex and downregulated FTO and ALKBH5. Conclusion Leukocyte m6A represents a potential noninvasive biomarker for NSCLC screening, monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xiaotian Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Ye Guo
- Department of Laboratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zhenxi Yang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Dongsheng Xu
- Hematopathology Program, CBL Path, Inc, Rye Brook, NY 10753, USA
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, Research Science Center, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Nemtsova MV, Mikhaylenko DS, Kuznetsova EB, Bykov II, Zamyatnin AA. Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. BIOCHEMISTRY (MOSCOW) 2020; 85:735-748. [PMID: 33040718 DOI: 10.1134/s0006297920070020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Main factors involved in carcinogenesis are associated with somatic mutations in oncogenes and tumor suppressor genes representing changes in the DNA nucleotide sequence. Epigenetic changes, such as aberrant DNA methylation, modifications of histone proteins, and chromatin remodeling, are equally important in the development of human neoplasms. From this perspective, mutations in the genes encoding key participants of epigenetic regulation are of particular interest including enzymes that methylate/demethylate DNA, enzymes that covalently attach or remove regulatory signals from histones, components of nucleosome remodeling multiprotein complexes, auxiliary proteins and cofactors of the above-mentioned molecules. This review describes both germline and somatic mutations in the key epigenetic regulators with emphasis on the latter ones in the solid human tumors, as well as considers functional consequences of these mutations on the cellular level. In addition, clinical associations of the somatic mutations in epigenetic regulators are presented, as well as DNA diagnostics of hereditary cancer syndromes due to germline mutations in the SMARC proteins and chemotherapy drugs directly affecting the altered epigenetic mechanisms for treatment of patients with solid neoplasms. The review is intended for a wide range of molecular biologists, geneticists, oncologists, and associated specialists.
Collapse
Affiliation(s)
- M V Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - D S Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia. .,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E B Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - I I Bykov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - A A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
14
|
Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020; 9:cells9051164. [PMID: 32397183 PMCID: PMC7291154 DOI: 10.3390/cells9051164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d'orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.
Collapse
|
15
|
Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, Hosseini V, Abdi M. Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:288-94. [PMID: 32429642 PMCID: PMC7392136 DOI: 10.29252/ibj.24.5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Previous data have shown the tumorigenicity roles of HDAC8 in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in TNBC. The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in diagnosis of TNBC tumors.
Collapse
Affiliation(s)
- Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Mohammadi-Yegane
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
16
|
Donovan MG, Wren SN, Cenker M, Selmin OI, Romagnolo DF. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation. Br J Pharmacol 2020; 177:1331-1350. [PMID: 31691272 DOI: 10.1111/bph.14891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and second leading cause of cancer mortality in women worldwide. Validated biomarkers enhance efforts for early detection and treatment, which reduce the risk of mortality. Epigenetic signatures have been suggested as good biomarkers for early detection, prognosis and targeted therapy of BC. Here, we highlight studies documenting the modifying effects of dietary fatty acids and obesity on BC biomarkers associated with DNA methylation. We focus our analysis on changes elicited in writers of DNA methylation (i.e., DNA methyltransferases), global DNA methylation and gene-specific DNA methylation. To provide context, we precede this discussion with a review of the available evidence for an association between BC incidence and both dietary fat consumption and obesity. We also include a review of well-vetted BC biomarkers related to cytosine-guanine dinucleotides methylation and how they influence BC risk, prognosis, tumour characteristics and response to treatment. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Micah G Donovan
- Interdisciplinary Cancer Biology Graduate Program, University of Arizona, Tucson, Arizona
| | - Spencer N Wren
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Mikia Cenker
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
17
|
|
18
|
Bhat SA, Majid S, Hassan T. MicroRNAs and its emerging role as breast cancer diagnostic marker- A review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2019. [DOI: 10.1016/j.abst.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|