1
|
Musil J, Ptacek A, Vanikova S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytometry A 2024; 105:729-736. [PMID: 39192598 DOI: 10.1002/cyto.a.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
Collapse
Affiliation(s)
- Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Antonin Ptacek
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Roy D, Gilmour C, Patnaik S, Wang LL. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Front Immunol 2023; 14:1264327. [PMID: 37928556 PMCID: PMC10620683 DOI: 10.3389/fimmu.2023.1264327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
Collapse
Affiliation(s)
- Dia Roy
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cassandra Gilmour
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Eichberger J, Spoerl S, Spanier G, Erber R, Taxis J, Schuderer J, Ludwig N, Fiedler M, Nieberle F, Ettl T, Geppert CI, Reichert TE, Spoerl S. TIGIT Expression on Intratumoral Lymphocytes Correlates with Improved Prognosis in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10123236. [PMID: 36551992 PMCID: PMC9775507 DOI: 10.3390/biomedicines10123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: T-cell immunoglobulin and ITIM domain (TIGIT) is a potential immunotherapeutic target in a variety of malignant entities, and antibody-based treatments are currently under investigation in clinical trials. While promising results were observed in patients with lung cancer, the role of TIGIT in oral squamous cell carcinoma (OSCC) as a biomarker as well as a therapeutic target remains elusive. Therefore, we evaluated the role of TIGIT as a prognostic factor in OSCC. (2) Methods: Here, we describe the results of a retrospective tissue microarray (TMA) OSCC cohort. Using immunohistochemistry, TIGIT expression was correlated with overall and recurrence-free survival (OAS and RFS, respectively). Additionally, in silico analysis was performed based on the TCGA Head and Neck Squamous Cell Carcinoma (HNSCC) cohort in order to correlate patients' survival with TIGIT and CD274 (encoding for PD-L1) gene expression levels. (3) Results: Database analysis revealed a beneficial outcome in OAS for tumor patients with high intraepithelial CD3-TIGIT-expression (n = 327). Hereby, OAS was 53.9 months vs. 30.1 months for patients with lower TIGIT gene expression levels (p = 0.033). In our retrospective OSCC-TMA cohort, elevated TIGIT levels on CD3+ cells correlated significantly with improved OAS (p = 0.025) as well as distant RFS (p = 0.026). (4) Conclusions: This study introduces TIGIT as a novel prognostic factor in OSCC, indicating the improved outcome of OSCC patients relative to their increased TIGIT expression. TIGIT might provide therapeutic implications for future immunotherapy in advanced-stage OSCC patients.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5—Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91051 Erlangen, Germany
| | - Juergen Taxis
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Johannes Schuderer
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Fiedler
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Felix Nieberle
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Carol I. Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91051 Erlangen, Germany
| | - Torsten E. Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Steffen Spoerl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-6340; Fax: +49-941-944-6342
| |
Collapse
|
4
|
Giampietri C, Scatozza F, Crecca E, Vigiano Benedetti V, Natali PG, Facchiano A. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med 2022; 20:467. [PMID: 36224560 PMCID: PMC9559014 DOI: 10.1186/s12967-022-03670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Elena Crecca
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Virginia Vigiano Benedetti
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | | | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy.
| |
Collapse
|
5
|
Chen X, Xue L, Ding X, Zhang J, Jiang L, Liu S, Hou H, Jiang B, Cheng L, Zhu Q, Zhang L, Zhou X, Ma J, Liu Q, Li Y, Ren Z, Jiang B, Song X, Song J, Jin W, Wei M, Shen Z, Liu X, Wang L, Li K, Zhang T. An Fc-Competent Anti-Human TIGIT Blocking Antibody Ociperlimab (BGB-A1217) Elicits Strong Immune Responses and Potent Anti-Tumor Efficacy in Pre-Clinical Models. Front Immunol 2022; 13:828319. [PMID: 35273608 PMCID: PMC8902820 DOI: 10.3389/fimmu.2022.828319] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
TIGIT (T-cell immunoglobulin and ITIM domain) has emerged as a promising target in cancer immunotherapy. It is an immune “checkpoint” inhibitor primarily expressed on activated T cells, NK cells and Tregs. Engagement of TIGIT to its ligands PVR and PVR-L2 leads to inhibitory signaling in T cells, promoting functional exhaustion of tumor-infiltrating T lymphocytes. Here, we described the pre-clinical characterization of Ociperlimab (BGB-A1217), a novel humanized IgG1 anti-TIGIT antibody (mAb), and systemically evaluated the contribution of Fc functions in the TIGIT mAb-mediated anti-tumor activities. BGB-A1217 binds to the extracellular domain of human TIGIT with high affinity (KD = 0.135 nM) and specificity, and efficiently blocks the interaction between TIGIT and its ligands PVR or PVR-L2. Cell-based assays show that BGB-A1217 significantly enhances T-cell functions. In addition, BGB-A1217 induces antibody dependent cellular cytotoxicity (ADCC) against Treg cells, activates NK cells and monocytes, and removes TIGIT from T cell surfaces in an Fc-dependent manner, In vivo, BGB-A1217, either alone or in combination with an anti-PD-1 mAb elicits strong immune responses and potent anti-tumor efficacy in pre-clinical models. Moreover, the Fc effector function is critical for the anti-tumor activity of BGB-A1217 in a syngeneic human TIGIT-knock-in mouse model. The observed anti-tumor efficacy is associated with a pharmacodynamic change of TIGIT down-regulation and Treg reduction. These data support the selection of BGB-A1217 with an effector function competent Fc region for clinical development for the treatment of human cancers.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Liu Xue
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiao Ding
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Jing Zhang
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Lei Jiang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Sha Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Hongjia Hou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bin Jiang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Liang Cheng
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Qing Zhu
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Lijie Zhang
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaosui Zhou
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Jie Ma
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Qi Liu
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Yucheng Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Zhiying Ren
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Beibei Jiang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaomin Song
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Jing Song
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wei Jin
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Min Wei
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Zhirong Shen
- Department of Discovery Biomarkers, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xuesong Liu
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Tong Zhang
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
6
|
Florou V, Garrido-Laguna I. Clinical Development of Anti-TIGIT Antibodies for Immunotherapy of Cancer. Curr Oncol Rep 2022; 24:1107-1112. [PMID: 35412226 DOI: 10.1007/s11912-022-01281-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW T-cell immunoglobulin and ITIM domain (TIGIT) is a next-generation inhibitory receptor with multiple antibodies under exploration in cancer therapy. Here, we review the available data from the early trials and overview upcoming clinical trials on anti-TIGIT antibodies. RECENT FINDINGS There is a promising activity of anti-TIGIT, particularly in combination with anti-PD-1/PD-L1 in non-small cell lung cancer (NSCLC) with already phase 3 trials currently ongoing to confirm these early findings. Numerous anti-TIGIT antibodies are in clinical trials currently, and others are in preclinical development. Therefore, more data are expected in the next few years regarding the efficacy of this new checkpoint inhibitor in multiple solid and hematologic malignancies. However, preliminary data are promising, and anti-TIGIT treatment seems to confer more favorable responses when combined with anti-PD-1/anti-PD-L1 compared to either agent alone.
Collapse
|