1
|
Zhang Y, Tao J, Wang R, Xuan H, Chen Z, Xiao L, Ding H, Sun Z. Prognostic value of E‑26 transformation‑specific‑related gene in prostate cancer based on immunohistochemistry analysis. Oncol Lett 2023; 26:296. [PMID: 37274473 PMCID: PMC10236269 DOI: 10.3892/ol.2023.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
E-26 transformation-specific-related gene (ERG) has been implicated in prostate cancer; however, its prognostic role remains unclear. Therefore, the present study aimed to investigate the association of ERG with the prognosis after radical prostatectomy in patients with prostate cancer. Patient data were collected at the Huadong Hospital, affiliated with Fudan University, between January 2016 and March 2020. ERG protein expression was detected using immunohistochemistry. Independent-sample t-tests and χ2 tests were used to evaluate prostate cancer prognosis depending on ERG levels. The Kaplan-Meier method was used to estimate biochemical failure-free survival (BFFS) and the log-rank test was used to test the distribution. Prognostic factors were determined using Cox regression analysis. The median patient age was 69 years (range, 47-82 years). The median prostate-specific antigen (PSA) and free-PSA levels before treatment were 9.58 ng/ml (range, 0.003-187.400 ng/ml) and 1.13 ng/ml (range, 0.0059-30.6100 ng/ml), respectively. ERG protein expression was positive in 43 (16.6%) and negative in 216 (83.4%) cases. The median follow-up period and BFFS were 30 and 28 months, respectively. There was a significant difference in biochemical recurrence (P=0.017) between patients with positive and negative ERG expression. Patients with positive ERG expression had significantly worse BFFS curves compared with those with negative ERG expression (P=0.0038). In the multivariate Cox regression analysis, positive ERG expression was found to be an independent prognostic factor in patients with prostate cancer who underwent radical prostatectomy (hazard ratio, 4.08; 95% confidence interval, 2.03-8.17; P=0.000074). In conclusion, positive ERG expression is an independent prognostic risk factor for prostate cancer. These findings may be valuable for improvements in the clinical application of ERG immunohistochemistry.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Tao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Rangrang Wang
- Department of Surgery, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haojie Xuan
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhihao Chen
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haiyong Ding
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhongquan Sun
- Department of Urology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
2
|
Acosta-Vega NL, Varela R, Mesa JA, Garai J, Baddoo MC, Gómez-Gutiérrez A, Serrano-Gómez SJ, Lemus MN, Serrano ML, Zabaleta J, Combita AL, Sanabria-Salas MC. Metabolic pathways enriched according to ERG status are associated with biochemical recurrence in Hispanic/Latino patients with prostate cancer. Cancer Med 2023; 12:4306-4320. [PMID: 36329628 PMCID: PMC9972164 DOI: 10.1002/cam4.5301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The role of ERG-status molecular subtyping in prognosis of prostate cancer (PCa) is still under debate. In this study, we identified differentially expressed genes (DEGs) according to ERG-status to explore their enriched pathways and implications in prognosis in Hispanic/Latino PCa patients. METHODS RNA from 78 Hispanic PCa tissues from radical prostatectomies (RP) were used for RNA-sequencing. ERGhigh /ERGlow tumor groups were determined based on the 1.5-fold change median expression in non-tumor samples. DEGs with a False Discovery Rate (FDR) < 0.01 and a fold change >2 were identified between ERGhigh and ERGlow tumors and submitted to enrichment analysis in MetaCore. Survival and association analyses were performed to evaluate biochemical recurrence (BCR)-free survival. RESULTS The identification of 150 DEGs between ERGhigh and ERGlow tumors revealed clustering of most of the non-BCR cases (60%) into de ERGhigh group and most of the BCR cases (60.8%) in ERGlow group. Kaplan-Meier survival curves showed a worst BCR-free survival for ERGlow patients, and a significant reduced risk of BCR was observed for ERGhigh cases (OR = 0.29 (95%CI, 0.10-0.8)). Enrichment pathway analysis identified metabolic-related pathways, such as the renin-angiotensin system and angiotensin maturation system, the linoleic acid metabolism, and polyamines metabolism in these ERG groups. CONCLUSIONS ERGlow tumor cases were associated with poor BCR-free survival in our Hispanic/Latino patients, with metabolism-related pathways altered in the BCR progression. IMPACT Our findings suggest the need to dissect the role of diet, metabolism, and lifestyle as risk factors for more aggressive PCa subtypes.
Collapse
Affiliation(s)
- Natalia L Acosta-Vega
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia.,Programa de doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Rodolfo Varela
- Departamento de Urología, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia
| | - Jorge Andrés Mesa
- Departamento de Patología Oncológica, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Melody C Baddoo
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alberto Gómez-Gutiérrez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Silvia J Serrano-Gómez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia
| | - Marcela Nuñez Lemus
- Grupo de Apoyo y Seguimiento para la Investigación, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia
| | - Martha Lucía Serrano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia.,Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Alba L Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, DC, Colombia.,Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | | |
Collapse
|
3
|
Sutera P, Deek MP, Van der Eecken K, Wyatt AW, Kishan AU, Molitoris JK, Ferris MJ, Minhaj Siddiqui M, Rana Z, Mishra MV, Kwok Y, Davicioni E, Spratt DE, Ost P, Feng FY, Tran PT. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate 2022; 82 Suppl 1:S73-S85. [PMID: 35657158 PMCID: PMC9202472 DOI: 10.1002/pros.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Kim Van der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amar U. Kishan
- Department of Radiation Oncology, UCLA, Los Angeles, CA, USA
| | - Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew J. Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Minhaj Siddiqui
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V. Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals, Cleveland, OH, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium and Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Felix Y. Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|