1
|
Zhang Y, Zhao L, Wang L, Yue R, Zhu H, Zhang W, Sun J, Zhang Z, Ma D. Chlorogenic acid compounds from sweetpotato ( Ipomoea batatas L.) leaves facilitate megakaryocyte differentiation and thrombocytopoiesis via PI3K/AKT pathway. Front Pharmacol 2024; 15:1414739. [PMID: 39239661 PMCID: PMC11375679 DOI: 10.3389/fphar.2024.1414739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Idiopathic thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by antiplatelet autoantibodies, thrombocytopenia, and bleeding, however, its treatment options are limited. In this study, a kind of active component, chlorogenic acid compounds (CGAs) from sweetpotato leaves was extracted out to explore its medicinal value and provide novel therapeutic strategies for the treatment of ITP. CGAs was isolated by ionic liquids-ultrasound (IL-UAE), which contains six isomers of chlorogenic acid with total purity of 95.69%. The thrombopoietic effect and mechanism of CGAs were investigated using in silico prediction and experimental validation. The changes of HEL cells morphology in volume and the increase in the total cell percentage of polyploid cells indicated that CGAs could promote megakaryocyte differentiation. Meanwhile, CGAs could promote platelet formation in a murine model of ITP, which was established by injection of antiplatelet antibody. Further quantitative proteomics analysis and Western blot verification revealed that CGAs could activate PI3K/AKT signaling pathway, which confirmed the mechanism prediction. It suggested that CGAs may provide a novel therapeutic strategy that relies on the PI3K/AKT pathway to facilitate megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Wenting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| |
Collapse
|
2
|
Xu L, Song X, Zhang Y, Lin N, Wang J, Dai Q. Investigation of the mechanism of action of Shengxuexiaoban Capsules against primary immune thrombocytopenia using network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154413. [PMID: 36037773 DOI: 10.1016/j.phymed.2022.154413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Shengxuexiaoban Capsules (SC) is a classical prescription in traditional Chinese medicine (TCM) and has been clinically adopted in the treatment of primary immune thrombocytopenia (ITP) in China. However, the underlying mechanisms of the actions of SC on ITP remain clear. METHODS A network pharmacology approach was adopted to investigate the underlying molecular mechanism of SC in treating ITP, and the effects of SC on the proliferation, differentiation, and apoptosis of megakaryocyte (MK) and on the ITP animal model were investigated. RESULTS Network pharmacology analysis found 128 active compounds and 268 targets of these compounds in SC, as well as 221 ITP-related targets. The topological analysis found a central network containing 82 genes, which were significantly associated with the regulation of transcription, cell proliferation, apoptosis processes, the PI3K-AKT signaling pathway, the MAPK signaling pathway, and the ERK1 and ERK2 cascades. It showed that SC increased the proliferation and differentiation of MK, but had no significant impact on MK apoptosis in vivo. The addition of SC increased the gene expression of several potential targets, including STAT3, KDR, CASP3, and TGFB1. In addition, SC administration elevated the protein expression of p-AKT and inhibit the protein expression of p-ERK, but has no impact on the protein expression of p-P38. Moreover, SC could improve haemogram parameters, coagulation indicators, and the proliferation and differentiation of MK in the ITP animal model. CONCLUSIONS The present study systematically elucidated the underlying mechanisms of SC against ITP and provided an efficient strategy to discover the pharmacological mechanism of TCM. It may strengthen the understanding of SC and facilitate more application of this formula in the treatment of ITP.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China.
| |
Collapse
|
3
|
Wang MJ, Sun Y, Song Y, Ma JN, Wang ZQ, Ding XQ, Chen HY, Zhang XB, Song MM, Hu XM. Mechanism and Molecular Targets of Ejiao Siwu Decoction for Treating Primary Immune Thrombocytopenia Based on High-Performance Liquid Chromatograph, Network Pharmacology, Molecular Docking and Cytokines Validation. Front Med (Lausanne) 2022; 9:891230. [PMID: 35911404 PMCID: PMC9326259 DOI: 10.3389/fmed.2022.891230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the mechanisms and molecular targets of Ejiao Siwu Decoction (EJSW) for treating primary immune thrombocytopenia (ITP) using network pharmacology and molecular docking. Active compounds of EJSW were identified by high-performance liquid chromatography-diode array detector (HPLC-DAD) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) and their targets were obtained from HERB and SwissTargetPrediction, and ITP targets were obtained from Comparative Toxicogenomics Database (CTD) and GeneCards. STRING and Cytoscape were used for protein-protein interaction (PPI) network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses by WebGestalt yielded a gene-pathway network, Autodock molecular docking was applied to screen targets and active compounds, and cytokines were detected using a cytometric bead array (CBA) human inflammation kit. We identified 14 compounds and 129 targets, and 1,726 ITP targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumour necrosis factor (TNF), interleukin-6 (IL6), caspase-3 (CASP3) and tumour suppressor protein (TP53) were core targets (nodes and edges). Functional annotation identified cofactor binding and coenzyme binding, and 20 significantly enriched pathways. Active compounds of EJSW were successfully docked with ITP targets. Tumour necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were upregulated in ITP patients, vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor D (VEGF-D) were downregulated, and EJSW treatment reversed these trends. EJSW may regulate key ITP targets based on the in silico analyses, and protect vascular integrity through AGE-RAGE signalling, complement and coagulation cascades, and VEGF signalling by downregulating TNF-α, IL-1β and other inflammatory factors.
Collapse
Affiliation(s)
- Ming Jing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ju Ning Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi Qing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Qing Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Yan Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Min Song
- Nankou Hospital, Beijing, China
- *Correspondence: Min Min Song,
| | - Xiao Mei Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Min Min Song,
| |
Collapse
|
4
|
Jiang Y, Liu N, Zhu S, Hu X, Chang D, Liu J. Elucidation of the Mechanisms and Molecular Targets of Yiqi Shexue Formula for Treatment of Primary Immune Thrombocytopenia Based on Network Pharmacology. Front Pharmacol 2019; 10:1136. [PMID: 31632275 PMCID: PMC6780007 DOI: 10.3389/fphar.2019.01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
Yiqi Shexue formula (YQSX) is traditionally used to treat primary immune thrombocytopenia (ITP) in clinical practice of traditional Chinese medicine. However, its mechanisms of action and molecular targets for treatment of ITP are not clear. The active compounds of YQSX were collected and their targets were identified. ITP-related targets were obtained by analyzing the differential expressed genes between ITP patients and healthy individuals. Protein–protein interaction (PPI) data were then obtained and PPI networks of YQSX putative targets and ITP-related targets were visualized and merged to identify the candidate targets for YQSX against ITP. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out. The gene-pathway network was constructed to screen the key target genes. In total, 177 active compounds and 251 targets of YQSX were identified. Two hundred and thirty differential expressed genes with an P value < 0.005 and |log2(fold change)| > 1 were identified between ITP patient and control groups. One hundred and eighty-three target genes associated with ITP were finally identified. The functional annotations of target genes were found to be related to transcription, cytosol, protein binding, and so on. Twenty-four pathways including cell cycle, estrogen signaling pathway, and MAPK signaling pathway were significantly enriched. MDM2 was the core gene and other several genes including TP53, MAPK1, CDKN1A, MYC, and DDX5 were the key gens in the gene-pathway network of YQSX for treatment of ITP. The results indicated that YQSX’s effects against ITP may relate to regulation of immunological function through the specific biological processes and the related pathways. This study demonstrates the application of network pharmacology in evaluating mechanisms of action and molecular targets of complex herbal formulations.
Collapse
Affiliation(s)
- Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China.,Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Liu
- Department of PK- PD, Beijing Increase Research for Drug Efficacy and Safety Co., Ltd, Beijing, China
| | - Shirong Zhu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomei Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Yang J, Lee BJ, Lee JH. Case Reports of Idiopathic Thrombocytopenia Unresponsive to First-Line Therapies Treated With Traditional Herbal Medicines Based on Syndrome Differentiation. Explore (NY) 2016; 13:68-74. [PMID: 27876239 DOI: 10.1016/j.explore.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 10/20/2022]
Abstract
The objective of our study is to present two cases showing the effects of traditional Korean herbal medicines based on traditional Korean medicine (TKM) for the treatment of immune thrombocytopenic purpura (ITP). One patient showed no response to treatment with steroids and an immunosuppressive agent. Moreover, liver toxicity and side effects of steroids were evident. However, after he ceased conventional treatment and started to take an herbal medicine, his liver function normalized and the steroid side effects resolved. Ultimately, he achieved complete remission. Another patient with ITP had sustained remission after steroid therapy in childhood, but extensive uterine bleeding and thrombocytopenia recurred when she was 16 years old. She was managed with steroids again for 2 years, but severe side effects occurred, and eventually she ceased taking steroids. She refused a splenectomy, and was then treated with a herbal medicine for 7 months, ultimately leading to sustained remission again. Many patients with resistance to first-line treatments tend to be reluctant to undergo a splenectomy, considered a standard second-line treatment. In conclusion, herbal medicines, based on TKM, may offer alternative treatments for persistent or chronic ITP that is resistant to existing first-line treatments.
Collapse
Affiliation(s)
- Juno Yang
- Kyungheeyedang Oriental Medical Clinic, Suwon-City, Kyonggi-do, Republic of Korea
| | - Beom-Joon Lee
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun-Hwan Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea; Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Huang TP, Liu PH, Lien ASY, Yang SL, Chang HH, Yen HR. A nationwide population-based study of traditional Chinese medicine usage in children in Taiwan. Complement Ther Med 2014; 22:500-10. [DOI: 10.1016/j.ctim.2014.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 03/01/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022] Open
|
7
|
Wang Y, Dan Y, Yang D, Hu Y, Zhang L, Zhang C, Zhu H, Cui Z, Li M, Liu Y. The genus Anemarrhena Bunge: A review on ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:42-60. [PMID: 24556224 DOI: 10.1016/j.jep.2014.02.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/09/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anemarrhena asphodeloides Bunge. (Asparagaceae) yields Anemarrhenae Rhizoma, which has a long history to be used as a traditional medicine to treat various ailments, like cold-induced febrile disease with arthralgia, hematochezia, tidal fever and night sweats by Yin deficiency, bone-steaming, cough, and hemoptysis. It is also used as an ingredient of healthy food, wine, tea, biological toothpaste. Its importance is demonstrated by large scale to treat kinds of diseases in eastern Asian countries. The aim of this review is to provide up-to-date information about phytochemistry, pharmacology, and toxicology of Anemarrhena asphodeloides based on scientific literatures. It will build up a new foundation for further study on mechanism and development of better therapeutic agent and healthy product from Anemarrhena asphodeloides. MATERIAL AND METHODS All the available information on Anemarrhena asphodeloides was collected via electronic search (using PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar, Baidu Scholar, and Web of Science). RESULTS Comprehensive analysis of the literatures searched through sources available above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had been recorded in China, Japan, and Korea for thousands of years. The phytochemical investigation revealed the presence of steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, anthraquinones, and others. Crude extracts and pure compounds from Anemarrhena asphodeloides exhibited significant pharmacological effects on the nervous system and the blood system. They also showed valuable bioactivities, such as antitumor, anti-oxidation, anti-microbial, anti-virus, anti-inflammation, anti-osteoporosis, anti-skin aging and damage as well as other activities. CONCLUSIONS In light of long traditional use and modern phytochemical and pharmacological studies summarized, Anemarrhena asphodeloides has demonstrated a strong potential for therapeutic and health-maintaining purposes. Both the extracts and chemical components isolated from the plant showed a wide range of biological activities. Thus more pharmacological mechanisms on main active compounds (TBII, TAIII, mangiferin and other ingredients) are necessary to be explored. In addition, as a good source of the traditional medicine, clinical studies of main therapeutic aspects (e.g. diabetes, Alzheimer׳s disease, Parkinson׳s disease, etc.), toxicity and adverse effect of Anemarrhena asphodeloides will also undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- Yingli Wang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Yang Dan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Beijing 100193, China
| | - Dawei Yang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Yuli Hu
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Le Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Chunhong Zhang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong Zhu
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Zhanhu Cui
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Minhui Li
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - Yanze Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Beijing 100193, China.
| |
Collapse
|