1
|
Ryu H, Song C, Kim J, Jeon JH, Cho S, Kim K, Jheon S, Kim SH, Kim YJ, Lee JS. Role of prognostic nutritional index in postoperative radiotherapy for non-small cell lung cancer. Thorac Cancer 2023; 14:2859-2868. [PMID: 37594010 PMCID: PMC10542465 DOI: 10.1111/1759-7714.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The prognostic nutritional index (PNI) is known to be correlated with clinical outcomes in non-small cell lung cancer (NSCLC) patients. However, its role has not been studied in patients who have undergone postoperative radiotherapy (PORT). This study aimed to investigate the relationship between PNI and survival and recurrence in NSCLC patients with PORT. METHODS We reviewed 97 stage I-III NSCLC patients who received PORT between January 2006 and December 2016 at our institution. We obtained PNI values for both pre-RT (within 1 month before PORT) and post-RT (within 2 months after PORT) by using serum albumin and lymphocyte count. A cutoff value for PNI was determined by the receiver operating characteristic curve (ROC). The median follow-up period was 52.8 months. RESULTS The ROC curve of post-RT PNI exhibited a higher area under the curve (AUC 0.68, cut-off: 47.1) than that of pre-RT PNI (AUC 0.55, cutoff: 50.3), so the group was divided into high post-RT PNI (> 47.1) and low post-RT PNI ( ≤ 47.1). The five-year overall survival rate (OS) was 66.2% in the high post-RT group, compared with 41.8% in the low post-RT PNI group (p = 0.018). Those with both low pre-RT and low post-RT PNI had the worst five-year OS of 31.1%. Post-RT PNI (HR 0.92, p = 0.003) was an independent risk factor for mortality. CONCLUSIONS PNI after PORT was significantly associated with survival. This finding suggests that PNI can be used as a prognostic marker.
Collapse
Affiliation(s)
- Hyejo Ryu
- Department of Radiation OncologySeoul National University HospitalSeoulSouth Korea
| | - Changhoon Song
- Department of Radiation OncologySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Jae‐Sung Kim
- Department of Radiation OncologySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Jae Hyun Jeon
- Department of Thoracic and Cardiovascular SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Se Hyun Kim
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yu Jung Kim
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Jong Seok Lee
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| |
Collapse
|
2
|
Venkatesulu B, Giridhar P, Pujari L, Chou B, Lee JH, Block AM, Upadhyay R, Welsh JS, Harkenrider MM, Krishnan S, Verma V, En Hsieh C, Pradhan S, Small W, Solanki AA. Lymphocyte sparing normal tissue effects in the clinic (LymphoTEC): A systematic review of dose constraint considerations to mitigate radiation-related lymphopenia in the era of immunotherapy. Radiother Oncol 2022; 177:81-94. [PMID: 36334694 DOI: 10.1016/j.radonc.2022.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Radiation-related lymphopenia has been associated with suboptimal tumor control rates leading to inferior survival outcomes. To date, no standardized dose constraints are available to limit radiation dose to resident and circulating lymphocyte populations. We undertook this systemic review of the literature to provide a synopsis of the dosimetric predictors of radiation-related lymphopenia in solid malignancies. METHODOLOGY A systematic literature review of PubMed (National Institutes of Health), Cochrane Central (Cochrane collaboration), and Google Scholar was conducted with the following keywords: "radiation", "lymphopenia", "cancer", "dosimetric predictors" with an inclusion deadline of May 31, 2022. Studies that met prespecified inclusion criteria were designated either Good, Fair, or Poor Quality based on the Newcastle-Ottawa quality assessment. The dosimetric parameters derived from Good Quality studies were tabulated as LymphoTEC dose constraints. Dosimetric parameters derived from Fair and Poor-quality studies were grouped as optional. RESULTS An initial systematic search of the literature yielded 1,632 articles. After screening, a total of 48 studies met inclusion criteria and were divided into the following categories: central nervous system (CNS, 6), thoracic (11), gastrointestinal (26), gynecologic (2), head and neck, breast, and genitourinary (one each) cancers. Lung mean dose, heart mean dose, brain V25, spleen mean dose, estimated dose to immune cells, and bone marrow V10 were among the strongest predictors for severe lymphopenia related to radiotherapy. CONCLUSION Optimizing the delivery of radiation therapy to limit dose to lymphocyte-rich structures may curb the negative oncologic impact of lymphocyte depletion. The dose constraints described herein may be considered for prospective validation and future use in clinical trials to limit risk of radiation-related lymphopenia and possibly improve cancer-associated outcomes.
Collapse
Affiliation(s)
- BhanuPrasad Venkatesulu
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; Edward Hines Veteran affairs hospital, Chicago, IL, USA.
| | | | - Lincoln Pujari
- Department of Radiation Oncology, Tata memorial center, Varanasi, India
| | - Brian Chou
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; Edward Hines Veteran affairs hospital, Chicago, IL, USA
| | - Jae Han Lee
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Alec M Block
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; Edward Hines Veteran affairs hospital, Chicago, IL, USA
| | - Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - James S Welsh
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; Edward Hines Veteran affairs hospital, Chicago, IL, USA
| | - Matthew M Harkenrider
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Vivek Verma
- Department of Radiation Oncology, MD Anderson cancer center, Houston, Texas, USA
| | - Cheng En Hsieh
- Department of Radiation Oncology, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan City, Taiwan; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston and The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Satyajit Pradhan
- Department of Radiation Oncology, Tata memorial center, Varanasi, India
| | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA
| | - Abhishek A Solanki
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, IL 60153, USA; Edward Hines Veteran affairs hospital, Chicago, IL, USA
| |
Collapse
|
3
|
Jing W, Xu T, Wu L, Lopez PB, Grassberger C, Ellsworth SG, Mohan R, Hobbs BP, Blumenschein GR, Tu J, Altan M, Lee P, Liao Z, Lin SH. Severe Radiation-Induced Lymphopenia Attenuates the Benefit of Durvalumab After Concurrent Chemoradiotherapy for NSCLC. JTO Clin Res Rep 2022; 3:100391. [PMID: 36089921 PMCID: PMC9449658 DOI: 10.1016/j.jtocrr.2022.100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Durvalumab after concurrent chemoradiation (CCRT) for NSCLC improves survival, but only in a subset of patients. We investigated the effect of severe radiation-induced lymphopenia (sRIL) on survival in these patients. Methods Outcomes after CCRT (2010–2019) or CCRT followed by durvalumab (2018–2019) were reviewed. RIL was defined by absolute lymphocyte count (ALC) nadir in samples collected at end of CCRT; sRIL was defined as nadir ALC less than 0.23 × 109/L (the lowest tertile). Progression-free survival (PFS) and overall survival (OS) were calculated by the Kaplan-Meier method. Cox proportional hazard modeling evaluated associations between clinical variables and survival. Results Of 309 patients, 192 (62%) received CCRT only and 117 (38%) CCRT plus durvalumab. Multivariable logistic regression analysis indicated that sRIL was associated with planning target volume (OR = 1.002, p = 0.001), stage IIIB disease (OR = 2.77, p = 0.04), and baseline ALC (OR = 0.36, p < 0.01). Durvalumab extended median PFS (23.3 versus 14.1 mo, p = 0.003) and OS (not reached versus 30.8 mo, p < 0.01). sRIL predicted poorer PFS and OS in both treatment groups. Among patients with sRIL, durvalumab did not improve survival (median = 24.6 mo versus 18.1 mo CCRT only, p = 0.079). On multivariable analyses, sRIL (OR = 1.81, p < 0.01) independently predicted poor survival. Conclusions Severe RIL compromises survival benefits from durvalumab after CCRT for NSCLC. Measures to mitigate RIL after CCRT may be warranted to enhance the benefit of consolidation durvalumab.
Collapse
Affiliation(s)
- Wang Jing
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Shandong, People’s Republic of China
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lirong Wu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Pablo B. Lopez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clemens Grassberger
- Radiation-Drug Treatment Design Lab, Massachusetts General Hospital, Boston, Massachusetts
| | - Susannah G. Ellsworth
- Gastrointestinal Malignancies Service, Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Radhe Mohan
- Department of Population Health, The University of Texas at Austin, Austin, Texas
| | - Brian P. Hobbs
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George R. Blumenschein
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Janet Tu
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehmet Altan
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Percy Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Corresponding author. Address correspondence to: Steven H. Lin, MD, PhD, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.
| |
Collapse
|
4
|
Ahmadsei M, Christ SM, Seiler A, Vlaskou Badra E, Willmann J, Hertler C, Guckenberger M. Quality-of-life and toxicity in cancer patients treated with multiple courses of radiation therapy. Clin Transl Radiat Oncol 2022; 34:23-29. [PMID: 35313618 PMCID: PMC8933336 DOI: 10.1016/j.ctro.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple repeat radiotherapy courses are used more frequently. Prediction of tolerability, quality of life and toxicity remains a challenge. Patients treated with a minimum of five radiotherapies show a stable quality of life. Yet, fatigue and low levels of hemoglobin and lymphocytes are long-term side effects.
Background Treatment of metastatic cancer patients with multiple repeat courses of radiotherapy has become more frequent due to their improved overall survival. However, very little is known about their long-term outcome. This analysis reports on the quality-of-life, hematologic toxicity, patient-reported experiences and satisfaction, and psychological distress of cancer patients treated with multiple repeat radiotherapy. Methods All patients treated with ≥5 courses of radiotherapy between 2011 and 2019 at the Department of Radiation Oncology, University Hospital Zurich (USZ) were screened for this study. A course of radiotherapy was defined as all treatment sessions to one anatomical site under one medical indication. All patients completed two questionnaires: EORTC QLQ-C30 questionnaire for quality-of-life and a questionnaire evaluating psychological distress and patient-reported experiences. Hematologic toxicities were assessed via a recent blood sample. Results Of n = 33 patients treated with ≥5 radiotherapy courses and being alive, 20 (60.6%) participated in this study. The most common primary tumor was non-small cell lung cancer (n = 14, 42.4%). The most common sites of irradiation were brain (n = 78, 37.1%) and bone metastases (n = 59, 28.1%). All participating patients reported that they had experienced a subjective benefit from multiple repeat radiotherapy and denied increased side effects in later radiotherapy courses. Yet, 45% (n = 9) of the patients reported an increase of psychological distress with increasing numbers of radiotherapy treatments. While global health status was stable, patients having received multiple repeat radiotherapy reported increased fatigue (p = <0.006). Blood analysis showed significantly reduced hemoglobin and lymphocyte levels compared to the healthy population (p = <0.03). Discussion and conclusion Patient-reported experiences and satisfaction of long-term cancer patients treated with multiple repeat radiotherapy are positive. However, increased levels of fatigue and significantly reduced hemoglobin and lymphocyte levels were observed. These data indicate the need to further investigate the effects of multiple courses of radiotherapy in chronic cancer patients.
Collapse
|
5
|
Outcomes of Image-Guided Moderately Hypofractionated Radiotherapy for Stage III Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2721261. [PMID: 34887921 PMCID: PMC8651380 DOI: 10.1155/2021/2721261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022]
Abstract
Objective To evaluate the efficacy and toxicity of hypofractionated radiotherapy (hypo-RT) for stage III non-small-cell lung cancer (NSCLC) in the Chinese population. Methods Eighty-six stage III NSCLC patients who received hypo-RT (60 Gy/20 fractions, BED = 78.00 Gy: 73 patients; 62.5 Gy/25 fractions, BED = 78.13 Gy: 13 patients) were recruited. Fifty-seven patients who received conventional radiotherapy (60 Gy/30 fractions, BED = 72.00 Gy) during the same period were enrolled as the control group. All hypo-RT treatments were conducted using image-guided technology. The efficacy and toxicity of the treatment were compared between the two groups. Results The median duration of follow-up was 23.0 months (range: 4.0–82.0 months). Univariate and multivariate analyses of all 143 stage III NSCLC patients revealed that hypo-RT was an independent factor for progression-free survival (PFS) and overall survival (OS). The median PFS and OS of hypo-RT were significantly higher than in the conventional RT group (PFS: 14.30, 11.00 months, p=0.035; OS: 43.30, 31.50 months, p=0.045). The incidence rates of symptomatic radiation pneumonitis and radiation esophagitis (≥grade 2) were 17.77% and 27.91%, respectively, in the hypo-RT group. Compared to the conventional radiation therapy group (22.81% and 19.30%, respectively), no significant differences were found between the two common side effects (p=0.662 and p=0.241, respectively). Conclusion For Chinese stage III NSCLC patients, image-guided hypo-RT offers favorable prognosis, and the treatment toxicity was totally acceptable. This radiation modality deserves further prospective clinical trials.
Collapse
|