1
|
Pierrard J, Heylen S, Vandermeulen A, Van Ooteghem G. Dealing with rectum motion during radiotherapy: How can we anticipate it? Tech Innov Patient Support Radiat Oncol 2024; 32:100277. [PMID: 39391230 PMCID: PMC11465212 DOI: 10.1016/j.tipsro.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Intra- and inter-fraction rectum motion is important for pelvic radiotherapy (RT). This study assesses how RT session duration, the presence or the absence of an intra-rectal tumour, and the distance from the anorectal junction (ARJd) impact rectal motion. Materials and methods Analyses used cone-beam computed tomographies (CBCTs) from RT patients treated for rectal and prostate cancer. Three structures were evaluated: (1) the entire rectum in patients without a rectal tumour (RectumProstate); (2) the non-invaded portion (RectumRectum) and (3) the tumour-invaded portion (RectumTumour) in rectal cancer patients.Intrafraction motion was assessed using the Hausdorff distance 95% and the Mean distance-to-agreement between structures delineated on the first CBCT and the 2 subsequent CBCTs within a same RT session. Interfraction motion was quantified by comparing structures delineated on the planning-CT and the first CBCT of each session.Linear mixed model evaluated rectum motion in relation to time, tumour presence, and ARJd, respectively. Results We included 10 patients with and 10 without rectal cancer, collecting 385 CBCTs. A significant correlation (p < 0.05) between rectum motion and RT session duration was found. Intrafraction motion was significantly higher in prostate cancer patients (RectumProstate motion > RectumRectum and RectumTumour, p < 0.01). For interfraction motion, only the mean distance to agreement was significantly higher for RectumProstate (p < 0.05). Motion increased significantly with ARJd for all three structures (p < 0.001). Conclusions Session duration, absence of a tumour, and ARJd are associated with larger intra- and interfraction rectal motion. This highlights the need for tailored RT treatment, including online-adaptive RT, to manage intra- and interfraction variations. Rectal motion should be handled differently for patients with prostate cancer and those with rectal cancer.
Collapse
Affiliation(s)
- Julien Pierrard
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sofie Heylen
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Ad Vandermeulen
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Azzarouali S, Goudschaal K, Visser J, Daniëls L, Bel A, den Boer D. Minimizing human interference in an online fully automated daily adaptive radiotherapy workflow for bladder cancer. Radiat Oncol 2024; 19:138. [PMID: 39375787 PMCID: PMC11457325 DOI: 10.1186/s13014-024-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The aim was to study the potential for an online fully automated daily adaptive radiotherapy (RT) workflow for bladder cancer, employing a focal boost and fiducial markers. The study focused on comparing the geometric and dosimetric aspects between the simulated automated online adaptive RT (oART) workflow and the clinically performed workflow. METHODS Seventeen patients with muscle-invasive bladder cancer were treated with daily Cone Beam CT (CBCT)-guided oART. The bladder and pelvic lymph nodes (CTVelective) received a total dose of 40 Gy in 20 fractions and the tumor bed received an additional simultaneously integrated boost (SIB) of 15 Gy (CTVboost). During the online sessions a CBCT was acquired and used as input for the AI-network to automatically delineate the bladder and rectum, i.e. influencers. These influencers were employed to guide the algorithm utilized in the delineation process of the target. Manual adjustments to the generated contours are common during this clinical workflow prior to plan reoptimization and RT delivery. To study the potential for an online fully automated workflow, the oART workflow was repeated in a simulation environment without manual adjustments. A comparison was made between the clinical and automatic contours and between the treatment plans optimized on these clinical (Dclin) and automatic contours (Dauto). RESULTS The bladder and rectum delineated by the AI-network differed from the clinical contours with a median Dice Similarity Coefficient of 0.99 and 0.92, a Mean Distance to Agreement of 1.9 mm and 1.3 mm and a relative volume of 100% and 95%, respectively. For the CTVboost these differences were larger, namely 0.71, 7 mm and 78%. For the CTVboost the median target coverage was 0.42% lower for Dauto compared to Dclin. For CTVelective this difference was 0.03%. The target coverage of Dauto met the clinical requirement of the CTV-coverage in 65% of the sessions for CTVboost and 95% of the sessions for the CTVelective. CONCLUSIONS While an online fully automated daily adaptive RT workflow shows promise for bladder treatment, its complexity becomes apparent when incorporating a focal boost, necessitating manual checks to prevent potential underdosage of the target.
Collapse
Affiliation(s)
- Sana Azzarouali
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands.
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Karin Goudschaal
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorrit Visser
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laurien Daniëls
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arjan Bel
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
- Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Duncan den Boer
- Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ma C, Zhou J. First Application of Demand-Triggered Online Adaptive Radiotherapy in the Treatment of Cervical Cancer: A Clinical Report. Cureus 2024; 16:e69703. [PMID: 39429366 PMCID: PMC11490271 DOI: 10.7759/cureus.69703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Gynecology cancers can reap significant benefits from adaptive radiation therapy (ART) for four major reasons: organ motion, organ deformation, density change, and cavity filling. There are three recognized types of adaptive radiotherapy: offline, online, and real-time. This balance of improved dosimetry versus clinic resources, as well as the optimal timing for adaptations, is still under investigation. The emergence of on-demand online adaptive radiotherapy (OART) can solve the above problems. In this context, we introduce two patients with cervical cancer who used on-demand OART for the first time. One patient with cervical cancer received radical radiotherapy on the United Imaging uCT-ART platform, and another patient with cervical cancer received postoperative adjuvant radiotherapy. The radiotherapy process used OART, which was triggered by senior radiotherapists, assisted by artificial intelligence, and guided by fan-beam computer tomography. Patient 1, who was 54 years old with cervical squamous cell carcinoma, International Federation of Gynecology and Obstetrics (FIGO) stage ⅢC1, underwent radical concurrent chemoradiotherapy. The target volume was reduced in the late stage of radiotherapy. The target volume coverage of the OART plan was better, and the bladder and rectum doses were lower than those of the image-guided radiotherapy plan. Patient 2, who was 56 years old with cervical adenocarcinoma, FIGO stage ⅡA1, underwent postoperative concurrent chemoradiotherapy. If the fractionated treatment during radiotherapy was carried out according to the original plan, treatment off-target would occur, while the OART plan could ensure target coverage. The acute toxic reactions that occurred in both patients during radiotherapy were patient-reported outcome Common Terminology Criteria for Adverse Events 1-2, and no toxic reactions of grade 3 or above occurred. This is the first description of the successful implementation of the uCT-ART-based OART system in EBRT for cervical cancer.
Collapse
Affiliation(s)
- Chenying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, CHN
| |
Collapse
|
4
|
Åström LM, Sibolt P, Chamberlin H, Serup-Hansen E, Andersen CE, van Herk M, Mouritsen LS, Aznar MC, Behrens CP. Artificial intelligence-generated targets and inter-observer variation in online adaptive radiotherapy of bladder cancer. Phys Imaging Radiat Oncol 2024; 31:100640. [PMID: 39297081 PMCID: PMC11407955 DOI: 10.1016/j.phro.2024.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Background and purpose Daily target re-delineation in online adaptive radiotherapy (oART) introduces uncertainty. The aim of this study was to evaluate artificial intelligence (AI) generated contours and inter-observer target variation among radiotherapy technicians in cone-beam CT (CBCT) guided oART of bladder cancer. Materials and methods For each of 10 consecutive patients treated with oART for bladder cancer, one CBCT was randomly selected and retrospectively included. The bladder (CTV-T) was AI-segmented (CTV-TAI). Seven radiotherapy technicians independently reviewed and edited CTV-TAI, generating CTV-TADP. Contours were benchmarked against a ground truth contour (CTV-TGT) delineated blindly from scratch. CTV-TADP and CTV-TAI were compared to CTV-TGT using volume, dice similarity coefficient, and bidirectional local distance. Dose coverage (D99%>95 %) of CTV-TGT was evaluated for treatment plans optimized for CTV-TAI and CTV-TADP with clinical margins. Inter-observer variation among CTV-TADP was assessed using coefficient of variation and generalized conformity index. Results CTV-TGT ranged from 48.7 cm3 to 211.6 cm3. The median [range] volume difference was 4.5 [-17.8, 42.4] cm3 for CTV-TADP and -15.5 [-54.2, 4.3] cm3 for CTV-TAI, compared to CTV-TGT. Corresponding dice similarity coefficients were 0.87 [0.71, 0.95] and 0.84 [0.64, 0.95]. CTV-TGT was adequately covered in 68/70 plans optimized on CTV-TADP and in 6/10 plans optimized on CTV-TAI with clinical margins. The median [range] coefficient of variation was 0.08 [0.05, 0.11] and generalized conformity index was 0.78 [0.71, 0.88] among CTV-TADP. Conclusions Target re-delineation in CBCT-guided oART of bladder cancer demonstrated non-isotropic inter-observer variation. Manual adjustment of AI-generated contours was necessary to cover ground truth targets.
Collapse
Affiliation(s)
- Lina M Åström
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Patrik Sibolt
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Hannah Chamberlin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eva Serup-Hansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lene S Mouritsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne C Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claus P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| |
Collapse
|
5
|
Zeng Z, Zhu J, Wang Z, Wang G, Yan J, Zhang F. Pelvic target volume inter-fractional motion during radiotherapy for cervical cancer with daily iterative cone beam computed tomography. Radiat Oncol 2024; 19:48. [PMID: 38622628 PMCID: PMC11017626 DOI: 10.1186/s13014-024-02438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Tumor regression and organ movements indicate that a large margin is used to ensure target volume coverage during radiotherapy. This study aimed to quantify inter-fractional movements of the uterus and cervix in patients with cervical cancer undergoing radiotherapy and to evaluate the clinical target volume (CTV) coverage. METHODS This study analyzed 303 iterative cone beam computed tomography (iCBCT) scans from 15 cervical cancer patients undergoing external beam radiotherapy. CTVs of the uterus (CTV-U) and cervix (CTV-C) contours were delineated based on each iCBCT image. CTV-U encompassed the uterus, while CTV-C included the cervix, vagina, and adjacent parametrial regions. Compared with the planning CTV, the movement of CTV-U and CTV-C in the anterior-posterior, superior-inferior, and lateral directions between iCBCT scans was measured. Uniform expansions were applied to the planning CTV to assess target coverage. RESULTS The motion (mean ± standard deviation) in the CTV-U position was 8.3 ± 4.1 mm in the left, 9.8 ± 4.4 mm in the right, 12.6 ± 4.0 mm in the anterior, 8.8 ± 5.1 mm in the posterior, 5.7 ± 5.4 mm in the superior, and 3.0 ± 3.2 mm in the inferior direction. The mean CTV-C displacement was 7.3 ± 3.2 mm in the left, 8.6 ± 3.8 mm in the right, 9.0 ± 6.1 mm in the anterior, 8.4 ± 3.6 mm in the posterior, 5.0 ± 5.0 mm in the superior, and 3.0 ± 2.5 mm in the inferior direction. Compared with the other tumor (T) stages, CTV-U and CTV-C motion in stage T1 was larger. A uniform CTV planning treatment volume margin of 15 mm failed to encompass the CTV-U and CTV-C in 11.1% and 2.2% of all fractions, respectively. The mean volume change of CTV-U and CTV-C were 150% and 51%, respectively, compared with the planning CTV. CONCLUSIONS Movements of the uterine corpus are larger than those of the cervix. The likelihood of missing the CTV is significantly increased due to inter-fractional motion when utilizing traditional planning margins. Early T stage may require larger margins. Personal radiotherapy margining is needed to improve treatment accuracy.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Jiawei Zhu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Zhiqun Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Guangyu Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| | - Fuquan Zhang
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
6
|
Storm KS, Åström LM, Sibolt P, Behrens CP, Persson GF, Serup-Hansen E. ROAR-A: re-optimization based Online Adaptive Radiotherapy of anal cancer, a prospective phase II trial protocol. BMC Cancer 2024; 24:374. [PMID: 38528456 DOI: 10.1186/s12885-024-12111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Chemo-radiotherapy with curative intent for anal cancer has high complete remission rates, but acute treatment-related gastrointestinal (GI) toxicity is significant. Toxicity occurs due to irradiation of surrounding normal tissue. Current radiotherapy requires the addition of large planning margins to the radiation field to ensure target coverage regardless of the considerable organ motion in the pelvic region. This increases the irradiated volume and radiation dose to the surrounding normal tissue and thereby toxicity. Online adaptive radiotherapy uses artificial intelligence to adjust the treatment to the anatomy of the day. This allows for the reduction of planning margins, minimizing the irradiated volume and thereby radiation to the surrounding normal tissue.This study examines if cone beam computed tomography (CBCT)-guided oART with daily automated treatment re-planning can reduce acute gastrointestinal toxicity in patients with anal cancer. METHODS/DESIGN The study is a prospective, single-arm, phase II trial conducted at Copenhagen University Hospital, Herlev and Gentofte, Denmark. 205 patients with local only or locally advanced anal cancer, referred for radiotherapy with or without chemotherapy with curative intent, are planned for inclusion. Toxicity and quality of life are reported with Common Terminology Criteria of Adverse Events and patient-reported outcome questionnaires, before, during, and after treatment. The primary endpoint is a reduction in the incidence of acute treatment-related grade ≥ 2 diarrhea from 36 to 25% after daily online adaptive radiotherapy compared to standard radiotherapy. Secondary endpoints include all acute and late toxicity, overall survival, and reduction in treatment interruptions. RESULTS Accrual began in January 2022 and is expected to finish in January 2026. Primary endpoint results are expected to be available in April 2026. DISCUSSION This is the first study utilizing online adaptive radiotherapy to treat anal cancer. We hope to determine whether there is a clinical benefit for the patients, with significant reductions in acute GI toxicity without compromising treatment efficacy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05438836. Danish Ethical Committee: H-21028093.
Collapse
Affiliation(s)
- Katrine Smedegaard Storm
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, København, Denmark.
| | - Lina M Åström
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Patrik Sibolt
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Claus P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Gitte F Persson
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, København, Denmark
| | - Eva Serup-Hansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
7
|
Zhang Y, Wang G, Chang Y, Wang Z, Sun X, Sun Y, Zeng Z, Chen Y, Hu K, Qiu J, Yan J, Zhang F. Prospects for daily online adaptive radiotherapy for cervical cancer: Auto-contouring evaluation and dosimetric outcomes. Radiat Oncol 2024; 19:6. [PMID: 38212767 PMCID: PMC10785518 DOI: 10.1186/s13014-024-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Training senior radiation therapists as "adapters" to manage influencers and target editing is critical in daily online adaptive radiotherapy (oART) for cervical cancer. The purpose of this study was to evaluate the accuracy and dosimetric outcomes of automatic contouring and identify the key areas for modification. METHODS A total of 125 oART fractions from five postoperative cervical cancer patients and 140 oART fractions from five uterine cervical cancer patients treated with daily iCBCT-guided oART were enrolled in this prospective study. The same adaptive treatments were replanned using the Ethos automatic contours workflow without manual contouring edits. The clinical target volume (CTV) was subdivided into several separate regions, and the average surface distance dice (ASD), centroid deviation, dice similarity coefficient (DSC), and 95% Hausdorff distance (95% HD) were used to evaluate contouring for the above portions. Dosimetric results from automatic oART plans were compared to supervised oART plans to evaluate target volumes and organs at risk (OARs) dose changes. RESULTS Overall, the paired CTV had high overlap rates, with an average DSC value greater than 0.75. The uterus had the largest consistency differences, with ASD, centroid deviation, and 95% HD being 2.67 ± 1.79 mm, 17.17 ± 12 mm, and 10.45 ± 5.68 mm, respectively. The consistency differences of the lower nodal CTVleft and nodal CTVright were relatively large, with ASD, centroid deviation, and 95% HD being 0.59 ± 0.53 mm, 3.6 ± 2.67 mm, and 5.41 ± 4.08 mm, and 0.59 ± 0.51 mm, 3.6 ± 2.54 mm, and 4.7 ± 1.57 mm, respectively. The automatic online-adapted plan met the clinical requirements of dosimetric coverage for the target volume and improved the OAR dosimetry. CONCLUSIONS The accuracy of automatic contouring from the Ethos adaptive platform is considered clinically acceptable for cervical cancer, and the uterus, upper vaginal cuff, and lower nodal CTV are the areas that need to be focused on in training.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Guangyu Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yankui Chang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Zhiqun Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiansong Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuliang Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zheng Zeng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yining Chen
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Wang G, Wang Z, Guo Y, Zhang Y, Qiu J, Hu K, Li J, Yan J, Zhang F. Evaluation of PTV margins with daily iterative online adaptive radiotherapy for postoperative treatment of endometrial and cervical cancer: a prospective single-arm phase 2 study. Radiat Oncol 2024; 19:2. [PMID: 38178254 PMCID: PMC10768299 DOI: 10.1186/s13014-023-02394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND To determine the optimal planning target volume (PTV) margins for adequate coverage by daily iterative cone-beam computed tomography (iCBCT)-guided online adaptive radiotherapy (oART) in postoperative treatment of endometrial and cervical cancer and the benefit of reducing PTV margins. METHODS Fifteen postoperative endometrial and cervical cancer patients treated with daily iCBCT-guided oART were enrolled in this prospective phase 2 study. Pre- and posttreatment iCBCT images of 125 fractions from 5 patients were obtained as a training cohort, and clinical target volumes (CTV) were contoured separately. Uniform three-dimensional expansions were applied to the PTVpre to assess the minimum margin required to encompass the CTVpost. The dosimetric advantages of the proposed online adaptive margins were compared with conventional margin plans (7-15 mm) using an oART emulator in another cohort of 125 iCBCT scans. A CTV-to-PTV expansion was verified on a validation cohort of 253 fractions from 10 patients, and further margin reduction and acute toxicity were studied. RESULTS The average time from pretreatment iCBCT to posttreatment iCBCT was 22 min. A uniform PTV margin of 5 mm could encompass nodal CTVpost in 100% of the fractions (175/175) and vaginal CTVpost in 98% of the fractions (172/175). The margin of 5 mm was verified in our validation cohort, and the nodal PTV margin could be further reduced to 4 mm if ≥ 95% CTV coverage was predicted to be achieved. The adapted plan with a 5 mm margin significantly improved pelvic organ-at-risk dosimetry compared with the conventional margin plan. Grade 3 toxicities were observed in only one patient with leukopenia, and no patients experienced acute urinary toxicity. CONCLUSION In the postoperative treatment of endometrial and cervical cancer, oART could reduce PTV margins to 5 mm, which significantly decrease the dose to critical organs at risk and potentially lead to a lower incidence of acute toxicity.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zhiqun Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuping Guo
- Tumor Hospital affiliated to Xinjiang Medical University, Urumqi, China
| | - Yu Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jie Qiu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jing Li
- Varian, a Siemens Healthineers Company, Palo Alto, CA, USA
| | - JunFang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
- Department of Radiation Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Wang E, Yen A, Hrycushko B, Wang S, Lin J, Zhong X, Dohopolski M, Nwachukwu C, Iqbal Z, Albuquerque K. The accuracy of artificial intelligence deformed nodal structures in cervical online cone-beam-based adaptive radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100546. [PMID: 38369990 PMCID: PMC10869256 DOI: 10.1016/j.phro.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Background and Purpose Online cone-beam-based adaptive radiotherapy (ART) adjusts for anatomical changes during external beam radiotherapy. However, limited cone-beam image quality complicates nodal contouring. Despite this challenge, artificial-intelligence guided deformation (AID) can auto-generate nodal contours. Our study investigated the optimal use of such contours in cervical online cone-beam-based ART. Materials and Methods From 136 adaptive fractions across 21 cervical cancer patients with nodal disease, we extracted 649 clinically-delivered and AID clinical target volume (CTV) lymph node boost structures. We assessed geometric alignment between AID and clinical CTVs via dice similarity coefficient, and 95% Hausdorff distance, and geometric coverage of clinical CTVs by AID planning target volumes by false positive dice. Coverage of clinical CTVs by AID contour-based plans was evaluated using D100, D95, V100%, and V95%. Results Between AID and clinical CTVs, the median dice similarity coefficient was 0.66 and the median 95 % Hausdorff distance was 4.0 mm. The median false positive dice of clinical CTV coverage by AID planning target volumes was 0. The median D100 was 1.00, the median D95 was 1.01, the median V100% was 1.00, and the median V95% was 1.00. Increased nodal volume, fraction number, and daily adaptation were associated with reduced clinical CTV coverage by AID-based plans. Conclusion In one of the first reports on pelvic nodal ART, AID-based plans could adequately cover nodal targets. However, physician review is required due to performance variation. Greater attention is needed for larger, daily-adapted nodes further into treatment.
Collapse
Affiliation(s)
- Ethan Wang
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Allen Yen
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brian Hrycushko
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Siqiu Wang
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Jingyin Lin
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Xinran Zhong
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael Dohopolski
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Chika Nwachukwu
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Zohaib Iqbal
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Kevin Albuquerque
- University of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
10
|
Wang L, McQuaid D, Blackledge M, McNair H, Harris E, Lalondrelle S. Predicting cervical cancer target motion using a multivariate regression model to enable patient selection for adaptive external beam radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100554. [PMID: 38419803 PMCID: PMC10901141 DOI: 10.1016/j.phro.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Background and purpose Interfraction motion during cervical cancer radiotherapy is substantial in some patients, minimal in others. Non-adaptive plans may miss the target and/or unnecessarily irradiate normal tissue. Adaptive radiotherapy leads to superior dose-volume metrics but is resource-intensive. The aim of this study was to predict target motion, enabling patient selection and efficient resource allocation. Materials and methods Forty cervical cancer patients had CT with full-bladder (CT-FB) and empty-bladder (CT-EB) at planning, and daily cone-beam CTs (CBCTs). The low-risk clinical target volume (CTVLR) was contoured. Mean coverage of the daily CTVLR by the CT-FB CTVLR was calculated for each patient. Eighty-three investigated variables included measures of organ geometry, patient, tumour and treatment characteristics. Models were trained on 29 patients (171 fractions). The Two-CT multivariate model could use all available data. The Single-CT multivariate model excluded data from the CT-EB. A univariate model was trained using the distance moved by the uterine fundus tip between CTs, the only method of patient selection found in published cervix plan-of-the-day studies. Models were tested on 11 patients (68 fractions). Accuracy in predicting mean coverage was reported as mean absolute error (MAE), mean squared error (MSE) and R2. Results The Two-CT model was based upon rectal volume, dice similarity coefficient between CT-FB and CT-EB CTVLR, and uterine thickness. The Single-CT model was based upon rectal volume, uterine thickness and tumour size. Both performed better than the univariate model in predicting mean coverage (MAE 7 %, 7 % and 8 %; MSE 82 %2, 65 %2, 110 %2; R2 0.2, 0.4, -0.1). Conclusion Uterocervix motion is complex and multifactorial. We present two multivariate models which predicted motion with reasonable accuracy using pre-treatment information, and outperformed the only published method.
Collapse
Affiliation(s)
- Lei Wang
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Dualta McQuaid
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Matthew Blackledge
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Helen McNair
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Emma Harris
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Susan Lalondrelle
- The Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| |
Collapse
|
11
|
Yock AD, Cooney A, Morales‐Paliza M, Shinohara E, Homann K. Empirical analysis of a plan-of-the-day strategy to approximate daily online reoptimization for prostate CBCT-guided adaptive radiotherapy. J Appl Clin Med Phys 2024; 25:e14221. [PMID: 38029380 PMCID: PMC10795443 DOI: 10.1002/acm2.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Adaptive radiotherapy (ART) can improve the dose delivered to the patient in the presence of anatomic variations. However, the required time, effort, and clinical resources are intensive. This work analyzed a plan-of-the-day (POD) approach on clinical patients treated with online ART to explore implementations that balance dosimetric benefit and clinical resource cost. METHODS Eight patients treated to the prostate and proximal seminal vesicles with 26 fractions of CBCT-guided, daily online ART were retrospectively analyzed. With a plan library composed of daily adaptive plans from the initial week of treatment and the original plan, the effect of a POD approach starting the following week was investigated by simulating use of these previously generated plans under 3- and 6-degree-of-freedom patient alignment. The plan selected for each treatment was that from the library that maximized the Dice similarity coefficient of the clinical target volume with that of the current treatment fraction. The resulting distribution of several target coverage and organ-at-risk dose metrics are described relative to those achieved with the daily online reoptimized adaptive technique. RESULTS The values of target coverage and organ-at-risk dose metrics varied across patients and metrics. The POD schemas closely approximated the reference values from a fully reoptimized adaptive plan yet required less than 20% of the reoptimization effort. The POD schemas also had a much greater effect on target coverage metrics than 6-degree-of-freedom registration did. Organ-at-risk dose metrics also varied considerably across patients but did not exhibit a consistent dependence on the particular schema. CONCLUSIONS POD schemas were able to achieve the vast majority of the dosimetric benefit of daily online ART with a small fraction of the online reoptimization effort. Strategies like this might allow for more practical and strategic implementation of ART so as to benefit a greater number of patients.
Collapse
Affiliation(s)
- Adam D. Yock
- Department of Radiation OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Annie Cooney
- Department of Radiation OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Manuel Morales‐Paliza
- Department of Radiation OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Eric Shinohara
- Department of Radiation OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kenneth Homann
- Department of Radiation OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
12
|
Lee J, Lin JB, Weng CS, Chen SJ, Chen TC, Chen YJ. Impact of reduced margin pelvic radiotherapy on gastrointestinal toxicity and outcome in gynecological cancer. Clin Transl Radiat Oncol 2023; 43:100671. [PMID: 37692995 PMCID: PMC10482739 DOI: 10.1016/j.ctro.2023.100671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose To investigate the effect of reduced margin pelvic radiotherapy on gastrointestinal toxicity and outcomes in gynecological cancer. Materials and methods This retrospective study analyzed data of 590 patients who underwent hysterectomy and adjuvant pelvic radiotherapy between 2010 and 2020 at two tertiary centers. The pelvic nodal region was delineated based on a reduced margin definition or the Radiation Therapy Oncology Group (RTOG) guidelines. All patients were treated with intensity-modulated radiotherapy with imaging guidance. Gastrointestinal toxicity was assessed using the Common Terminology Criteria for Adverse Events (CTCAE) and the Patient-Reported Outcome version (PRO-CTCAE). Results Overall, 352 (59.7%) and 238 (40.3%) patients underwent RTOG and reduced margin pelvic radiotherapy, respectively. Median follow-up was 6.4 years (IQR: 3.7-9.6). Reduced margin pelvic radiotherapy significantly lowered the radiation dose to the small bowel. For CTCAE grade ≥ 2 or 3, acute gastrointestinal toxicity was lower in the reduced margin group than in the RTOG group (16.4% vs. 33.5%, p < 0.001; 2.9% vs. 8.5%, p < 0.001). The reduced margin group reported less severe acute gastrointestinal toxicity (PRO-CTCAE score ≥ 3) than the RTOG group (12.5% vs. 28.7%, p < 0.001). Late grade 3 gastrointestinal toxicity was lower in the reduced margin group than in the RTOG group (0.8% vs. 4.8%, p = 0.006). The 5-year pelvic recurrence-free survival and disease-free survival in the RTOG and reduced margin pelvic radiotherapy groups were 97.4% and 97.9% (p = 0.55) and 80.7% and 83.5% (p = 0.18), respectively. Conclusion Reduced margin pelvic radiotherapy decreased acute and late gastrointestinal toxicity and achieved favorable outcomes.
Collapse
Affiliation(s)
- Jie Lee
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jhen-Bin Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Sui Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Sue-Jar Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tze-Chien Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
13
|
Lin M, Kavanaugh JA, Kim M, Cardenas CE, Rong Y. Physicists should perform reference planning for CBCT guided online adaptive radiotherapy. J Appl Clin Med Phys 2023; 24:e14163. [PMID: 37776261 PMCID: PMC10562033 DOI: 10.1002/acm2.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/02/2023] Open
Affiliation(s)
- Mu‐Han Lin
- Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | | | - Minsun Kim
- Radiation OncologyUniversity of WashingtonSeattleWashingtonUSA
| | - Carlos E. Cardenas
- Radiation OncologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yi Rong
- RadiationOncologyMayo ClinicPhoenixArizonaUSA
| |
Collapse
|