1
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Liang M, Hu Q, Yu J, Zhang H, Liu S, Huang J, Sun Y. Baicalein combined with azoles against fungi in vitro. Front Microbiol 2025; 16:1537229. [PMID: 40182279 PMCID: PMC11966473 DOI: 10.3389/fmicb.2025.1537229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Invasive fungal infections (IFIs) constitute a significant health challenge, particularly among immunocompromised individuals, characterized by a high prevalence and associated mortality rates. The synergistic administration of Baicalein (BE) with azole antifungal agents could potentially herald a novel therapeutic paradigm. Materials and methods 54 Aspergillus strains and 23 strains of dematiaceous fungi were selected. The standard M38-A2 microbroth dilution method was used to test the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) of fungi when BE combined with itraconazole (ITC), voriconazole (VRC), posaconazole (POS) and Isavuconazole (ISV). Results BE shows synergistic effects with POS and ITC, with 89.61% and 25.97% of fungal strains. The BE/POS regimen exerted synergistic effects in 87.04% of Aspergillus and an impressive 95.65% of dematiaceous fungi. In comparison, the BE/ITC combination showed significantly lower synergy, affecting 33.33% of Aspergillus and a mere 8.70% of dematiaceous strains. Antagonistic interactions were sporadically observed with BE in combination with ITC, VRC, POS and ISV. Within the azole class, the BE/POS pairing stood out for its frequent synergistic activity, in contrast to the absence of such effects when BE was paired with VRC or ISV. Highlighting the potential of BE/POS as a notably effective antifungal strategy. Conclusion In vitro, BE/POS combination emerged as the most effective antifungal strategy, exhibiting synergistic effects in the majority of Aspergillus and dematiaceous fungi strains, whereas BE/ITC showed significantly less synergy, and BE with VRC or ISV displayed no synergistic activity.
Collapse
Affiliation(s)
- Mengmin Liang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qingwen Hu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Junhao Yu
- Department of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| | - Sijie Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiangrong Huang
- Endocrinology Department, The Third Clinical College of Yangtze University, Traditional Chinese Medicine of Jingzhou Hospital, Jingzhou, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Hubei Provincial Clinical Research Center for Diagnosis and Therapeutics of Pathogenic Fungal Infection, Jingzhou, China
| |
Collapse
|
3
|
Zieniuk B, Uğur Ş. The Therapeutic Potential of Baicalin and Baicalein in Breast Cancer: A Systematic Review of Mechanisms and Efficacy. Curr Issues Mol Biol 2025; 47:181. [PMID: 40136435 PMCID: PMC11941372 DOI: 10.3390/cimb47030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer remains a leading cause of death globally, with breast cancer being the most commonly diagnosed cancer in women. This systematic review focuses on the therapeutic potential of baicalin and baicalein, two bioactive flavonoids derived from Scutellaria baicalensis, in breast cancer treatment. These compounds exhibit anticancer properties through mechanisms such as apoptosis induction, cell cycle arrest, and inhibition of metastasis. Baicalin and baicalein modulate key signaling pathways, including NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin, and have shown efficacy in both in vitro and in vivo models. Their synergy with chemotherapy agents and incorporation into nanotechnology-based delivery systems highlight opportunities to enhance therapeutic outcomes. However, current evidence is predominantly preclinical, with limited clinical trials to validate their safety and efficacy in humans. Challenges such as poor bioavailability and rapid metabolism also underscore the need for advanced formulation strategies. This review synthesizes current evidence on the molecular mechanisms, therapeutic efficacy, and potential applications of baicalin and baicalein in breast cancer research.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
4
|
Pingping Z, Nan C, Yong T. Phytochemicals and their Nanoformulations for Overcoming Drug Resistance in Head and Neck Squamous Cell Carcinoma. Pharm Res 2025; 42:429-449. [PMID: 40032776 DOI: 10.1007/s11095-025-03836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Drug resistance remains a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC), leading to therapeutic failure and poor patient prognosis. Numerous mechanisms, including drug efflux pumps, altered tumor microenvironment (TME), and dysregulated cell death pathways, contribute to the development of resistance against conventional chemotherapeutic agents, immunotherapy, and targeted therapies. As resistance to traditional treatments continues to emerge, there is an urgent need for innovative therapeutic strategies to overcome these challenges. Phytochemicals are naturally occurring bioactive compounds and have demonstrated remarkable potential in targeting multiple resistance mechanisms simultaneously. METHOD This review comprehensively overviews the current understanding of drug resistance mechanisms in HNSCC and explores innovative strategies utilizing phytochemicals and their nanoformulations to overcome these resistance mechanisms, with a particular focus on recent developments and future perspectives in this field. RESULTS AND DISCUSSION Phytochemicals with anticancer properties include a wide range of herbal-derived molecules such as flavonoids, stilbenes, curcuminoids, alkaloids, traditional Chinese medicine, and others. These compounds can modulate ATP-binding cassette transporters, reverse epithelial-to-mesenchymal transition (EMT), target cancer stem cells (CSCs), and regulate various signaling pathways involved in drug resistance. The integration of phytochemicals into advanced nanoformulation systems has also shown a remarkable improvement in enhancing their bioavailability, stability, and targeted delivery to the TME, potentially improving their therapeutic efficacy. Furthermore, the combination of phytochemicals with conventional chemotherapeutic agents, targeted molecular therapy, and immune checkpoint inhibitors (ICIs) has exhibited synergistic effects, offering a promising approach to restoring drug sensitivity in resistant HNSCC cells. CONCLUSION Phytochemicals and their nanoformulations may improve response of HNSCC to therapy by alleviating drug resistance.
Collapse
Affiliation(s)
- Zhai Pingping
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China
| | - Chen Nan
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Tang Yong
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China.
| |
Collapse
|
5
|
Gupta S, Mehra A, Sangwan R. A review on phytochemicals as combating weapon for multidrug resistance in cancer. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:107-125. [PMID: 39121374 DOI: 10.1080/10286020.2024.2386678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/11/2024]
Abstract
One can recognize multidrug resistance (MDR) and residue as a biggest difficulty in cancer specialist. Chemotherapy-resistant cancer may be successfully treated by combining MDR-reversing phytochemicals with anticancer drugs. Though, clinical application of phytochemicals either alone or in conjunction with chemotherapy is still in its early stages or requires more research to determine their safety and efficacy. In this review we highlighted topics related to MDR in cancer, including an introduction to subject, mechanism of action of efflux pump, specific proteins involved in drug resistance, altered drug targets, increased drug metabolism, and potential role of phytochemicals in overcoming drug resistance.
Collapse
Affiliation(s)
- Sharwan Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
6
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
7
|
Fu Q, Yu Q, Luo H, Liu Z, Ma X, Wang H, Cheng Z. Protective effects of wogonin in the treatment of central nervous system and degenerative diseases. Brain Res Bull 2025; 221:111202. [PMID: 39814324 DOI: 10.1016/j.brainresbull.2025.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties. In ischemic stroke models, wogonin reduces infarct size and enhances neurological outcomes by mitigating inflammation and oxidative stress. For patients with hemorrhagic stroke and traumatic brain injury, it accelerates hematoma regression, mitigates secondary brain damage, and promotes neurogenesis, making it an entirely new treatment option for patients with limited access to this type of therapy. Its anticonvulsant and anxiolytic effects are mediated through GABA-A receptor modulation. Moreover, wogonin shows promise in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by promoting autophagy and reducing neuroinflammation. Additionally, it exhibits antiviral properties, offering potential benefits against CNS infections. Despite extensive preclinical evidence, further clinical studies are warranted to confirm its efficacy and safety in humans. This review highlights the great therapeutic potential of wogonin in terms of CNS protection. However, despite the substantial preclinical evidence, further large-scale clinical studies are necessary. Future researchers need to further explore the long-term efficacy and safety of wogonin in clinical trials and translate it for early application in the clinical treatment of true CNS disorders.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Huijian Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Zhijuan Cheng
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
8
|
He L, Zhu M, Yin R, Dai L, Chen J, Zhou J. Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K. Biomedicines 2025; 13:232. [PMID: 39857815 PMCID: PMC11763245 DOI: 10.3390/biomedicines13010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood. Methods: Isoprenaline injection or transverse aortic constriction-induced animal models and isoprenaline or angiotensin 2 administration-induced cell models of heart failure were established. Baicalin (15 mg/kg/day or 25 mg/kg/day) was administered in vivo, and 10 μM baicalin was administered in vitro. Potential pharmacological targets of baicalin and genes related to heart failure were identified via different databases, which suggested that PI3K-Akt may be involved in the effects of baicalin. Molecular docking was carried out to reveal the effect of baicalin on p85a. Results: We observed significant antihypertrophic and antifibrotic effects of baicalin both in vivo and in vitro. The mean cross-sectional area of cardiomyocytes recovered from 390 μm2 in the HF group to 195 μm2 in the baicalin-treated group. The area of fibrosis was reduced from 2.8-fold in the HF group to 1.62-fold in the baicalin-treated group. Baicalin displayed a significant cardioprotective effect via the inhibition of the PI3K signaling pathway by binding with five amino acid residues of the p85a regulatory subunit of PI3K. The combination treatment of baicalin and an inhibitor of PI3K p110 demonstrated a stronger cardioprotective effect. The mean ejection fraction increased from 54% in the baicalin-treated group to 67% in the combination treatment group. Conclusions: Our work identified baicalin as a new active herbal ingredient that is able to treat isoprenaline-induced heart dysfunction and suggests that p85a is a pharmacological target. These findings reveal the significant potential of baicalin combined with an inhibitor of PI3K p110 for the treatment of heart failure and support more clinical trials in the future.
Collapse
Affiliation(s)
- Lu He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Division of Neonatology, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Liangli Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.H.); (M.Z.); (R.Y.); (L.D.)
| |
Collapse
|
9
|
Hegde M, P R A, Mumbrekar KD. Exploring baicalein: A natural flavonoid for enhancing cancer prevention and treatment. Heliyon 2024; 10:e40809. [PMID: 39691196 PMCID: PMC11650287 DOI: 10.1016/j.heliyon.2024.e40809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Despite years of development in cancer therapy, achieving successful cancer treatment remains a major research topic. Primary means of cancer treatment include chemotherapy, radiotherapy, and surgery. However, these modalities are associated with limitations and adverse effects on normal tissues. Therefore, there is a search for novel therapeutic approaches that will increase the efficacy of the available treatment while minimizing side effects. Naturally occurring bioactive chemicals such as flavonoids have long been used in traditional medicine to treat various illnesses. Baicalein, an active ingredient in Scutellaria baicalensis Georgi, is utilised in traditional medicine to treat conditions such as hypertension, cardiovascular disease, inflammation, and infections. This review focuses on summarizing the data available on cancer prevention and treatment usage of baicalein. Baicalein is thought to prevent cancer progression by inducing apoptosis, autophagy, and genome instability, and its ability to promote chemo-potentiation, anti-metastatic effects, and regulate specific signalling molecules and transcription factors. Baicalein can be a promising option for cancer treatment, either alone or in combination with established anticancer drugs.
Collapse
Affiliation(s)
- Madhu Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana P R
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
10
|
Rahat I, Yadav P, Singhal A, Fareed M, Purushothaman JR, Aslam M, Balaji R, Patil-Shinde S, Rizwanullah M. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1473-1497. [PMID: 39600519 PMCID: PMC11590012 DOI: 10.3762/bjnano.15.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.
Collapse
Affiliation(s)
- Iqra Rahat
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Aditi Singhal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Jaganathan Raja Purushothaman
- Department of Orthopaedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Raju Balaji
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Sonali Patil-Shinde
- Department of Pharmaceutical Chemistry, Dr. D.Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri Pune-411018, Maharashtra, India
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
11
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Ha R, Cho WK, Kim E, Jang SJ, Kim JD, Yi CG, Moh SH. Exploring the Benefits of Herbal Medicine Composite 5 (HRMC5) for Skin Health Enhancement. Curr Issues Mol Biol 2024; 46:12133-12151. [PMID: 39590314 PMCID: PMC11593011 DOI: 10.3390/cimb46110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
The skin, as the body's largest organ, is vital for protecting against environmental stressors, regulating temperature, and preventing water loss. Here, we examined the potential of a mixture of five traditional Korean herbal extracts-Cimicifuga racemosa, Paeonia lactiflora, Phellodendron amurense, Rheum rhaponticum, and Scutellaria baicalensis-referred to as herbal medicine composite 5 (HRMC5) for enhancing skin health and managing menopausal symptoms. High-performance liquid chromatography identified 14 bioactive compounds, including flavonoids, phenolic acids, anthraquinones, and alkaloids. In vitro studies revealed an optimal concentration of 0.625 g/L for cell survival and UV protection, with the mixture demonstrating significant wound-healing properties comparable to epidermal growth factor. HRMC5 exhibited anti-inflammatory effects by downregulating COX2 expression and upregulating the key skin barrier proteins. A 4-week clinical trial involving 20 postmenopausal women showed significant improvements in skin redness, hemoglobin concentration, and skin moisture content. Visual analog scale assessments indicated substantial reductions in facial flushing severity and the associated sweating. The topical application of HRMC5 cream offered potential advantages over ingested phytoestrogens by reducing the systemic side effects. These findings suggest that HRMC5 is a promising non-invasive treatment for vasomotor symptoms in menopausal women and overall skin health, warranting further research on its long-term efficacy and safety in larger populations.
Collapse
Affiliation(s)
- Rira Ha
- Department of Beauty Industry, Sungshin Women’s University, Seoul 02844, Republic of Korea; (R.H.); (J.-D.K.)
| | - Won Kyong Cho
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (W.K.C.); (E.K.); (S.J.J.)
| | - Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (W.K.C.); (E.K.); (S.J.J.)
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (W.K.C.); (E.K.); (S.J.J.)
| | - Ju-Duck Kim
- Department of Beauty Industry, Sungshin Women’s University, Seoul 02844, Republic of Korea; (R.H.); (J.-D.K.)
| | - Chang-Geun Yi
- College of Medicine, Chung-Ang University, Seoul 06973, Republic of Korea;
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (W.K.C.); (E.K.); (S.J.J.)
| |
Collapse
|
13
|
Jia Y, Yang D, Wang W, Hu K, Yan M, Zhang L, Gao L, Lu Y. Recent advances in pharmaceutical cocrystals of theophylline. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:53. [PMID: 39276287 PMCID: PMC11401818 DOI: 10.1007/s13659-024-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
Currently, cocrystallization is a promising strategy for tailoring the physicochemical properties of active pharmaceutical ingredients. Theophylline, an alkaloid and the most primary metabolite of caffeine, is a readily available compound found in tea and coffee. It functions primarily as a bronchodilator and respiratory stimulant, making it a mainstay treatment for lung diseases like asthma. Theophylline's additional potential benefits, including anti-inflammatory and anticancer properties, and its possible role in neurological disorders, have garnered significant research interest. Cocrystal formation presents a viable approach to improve the physicochemical properties of theophylline and potentially mitigate its toxic effects. This review comprehensively explores several successful studies that utilized cocrystallization to favorably alter the physicochemical properties of theophylline or its CCF. Notably, cocrystals can not only enhance the solubility and bioavailability of theophylline but also exhibit synergistic effects with other APIs. The review further delves into the hydrogen bonding sites within the theophylline structure and the hydrogen bonding networks observed in cocrystal structures.
Collapse
Affiliation(s)
- Yanxiao Jia
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wenwen Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Kun Hu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Min Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830000, People's Republic of China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
14
|
Majidi M, Mirjalili MH, Farzaneh M, Rezadoost H. Fungal endophytes Fusarium solani SGGF14 and Alternaria tenuissima SGGF21 enhance the glycyrrhizin production by modulating its key biosynthetic genes in licorice (Glycyrrhiza glabra L.). J Appl Microbiol 2024; 135:lxae199. [PMID: 39182158 DOI: 10.1093/jambio/lxae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
AIMS To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.
Collapse
Affiliation(s)
- Mehdi Majidi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
15
|
Lai JQ, Zhao LL, Hong C, Zou QM, Su JX, Li SJ, Zhou XF, Li ZS, Deng B, Cao J, Qi Q. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol Sin 2024; 45:1715-1726. [PMID: 38684798 PMCID: PMC11272787 DOI: 10.1038/s41401-024-01258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent form of gastrointestinal malignancy with challenges in chemotherapy resistance and side effects. Effective and low toxic drugs for CRC treatment are urgently needed. Ferroptosis is a novel mode of cell death, which has garnered attention for its therapeutic potential against cancer. Baicalein (5, 6, 7-trihydroxyflavone) is the primary flavone extracted from the dried roots of Scutellaria baicalensis that exhibits anticancer effects against several malignancies including CRC. In this study, we investigated whether baicalein induced ferroptosis in CRC cells. We showed that baicalein (1-64 μM) dose-dependently inhibited the viability of human CRC lines HCT116 and DLD1. Co-treatment with the ferroptosis inhibitor liproxstatin-1 (1 μM) significantly mitigated baicalein-induced CRC cell death, whereas autophagy inhibitor chloroquine (25 μM), necroptosis inhibitor necrostatin-1 (10 μM), or pan-caspase inhibitor Z-VAD-FMK (10 μM) did not rescue baicalein-induced CRC cell death. RNA-seq analysis confirmed that the inhibitory effect of baicalein on CRC cells is associated with ferroptosis induction. We revealed that baicalein (7.5-30 μM) dose-dependently decreased the expression levels of GPX4, key regulator of ferroptosis, in HCT116 and DLD1 cells by blocking janus kinase 2 (JAK2)/STAT3 signaling pathway via direct interaction with JAK2, ultimately leading to ferroptosis in CRC cells. In a CRC xenograft mouse model, administration of baicalein (10, 20 mg/kg, i.g., every two days for two weeks) dose-dependently inhibited the tumor growth with significant ferroptosis induced by inhibiting the JAK2/STAT3/GPX4 axis in tumor tissue. This study demonstrates that ferroptosis contributes to baicalein-induced anti-CRC activity through blockade of the JAK2/STAT3/GPX4 signaling pathway, which provides evidence for the therapeutic application of baicalein against CRC.
Collapse
Affiliation(s)
- Jian-Qin Lai
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Le-le Zhao
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chao Hong
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiu-Ming Zou
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zi-Sheng Li
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Bo Deng
- The Affiliated Shunde Hospital of Jinan University, Foshan, 528305, China.
| | - Jie Cao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China.
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Drug ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Chen J, Zhang Q, Xu W, Li Z, Chen X, Luo Q, Wang D, Peng L. Baicalein upregulates macrophage TREM2 expression via TrKB-CREB1 pathway to attenuate acute inflammatory injury in acute-on-chronic liver failure. Int Immunopharmacol 2024; 139:112685. [PMID: 39047449 DOI: 10.1016/j.intimp.2024.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Acute-on-chronic liver failure (ACLF) is a syndrome characterized by a high short-term mortality rate, and effective interventions are still lacking. This study aims to investigate whether the small molecule baicalein can mitigate ACLF and elucidate the molecular mechanisms. METHODS The ACLF mouse model was induced through chronic liver injury using carbon tetrachloride, followed by acute inflammation induction with lipopolysaccharide (LPS). Baicalein was administered through intraperitoneal injection to explore its therapeutic effects. In vitro experiments utilized the iBMDM macrophage cell line to investigate the underlying mechanisms. Peripheral blood was collected from clinical ACLF patients for validation. RESULTS In the LPS-induced ACLF mouse model, baicalein demonstrated a significant reduction in acute inflammation and liver damage, as evidenced by histopathological evaluation, liver function analysis, and inflammatory marker measurements. Transcriptomic analysis, coupled with molecular biology experiments, uncovered that baicalein exerts its effects in ACLF by activating the TrKB-CREB1 signaling axis to upregulate the surface expression of the TREM2 receptor on macrophages. This promotes M2 macrophage polarization and activates efferocytosis, thereby inhibiting inflammation and alleviating liver damage. Furthermore, we observed a substantial negative correlation between postoperative peripheral blood plasma soluble TREM2 (sTREM2) levels and inflammation, as well as adverse outcomes in clinical ACLF patients. CONCLUSION Baicalein plays a protective role in ACLF by enhancing the surface expression of the TREM2 receptor on macrophages, leading to the suppression of inflammation, mitigation of liver damage, and a reduction in mortality. Additionally, plasma sTREM2 emerges as a critical indicator for predicting adverse outcomes in ACLF patients.
Collapse
Affiliation(s)
- Jia Chen
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiongchi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Orthopedics, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenxiong Xu
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Li
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiyao Chen
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiumin Luo
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Orthopedics, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Liang Peng
- Department of Infectious Diseases and Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Li C, Wang J, Li H, Wang Y, Wu H, Wei W, Wu D, Shao J, Wang T, Wang C. Suppressing the virulence factors of Candida auris with baicalein through multifaceted mechanisms. Arch Microbiol 2024; 206:349. [PMID: 38992278 DOI: 10.1007/s00203-024-04038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024]
Abstract
Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.
Collapse
Affiliation(s)
- Can Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Wang
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Hao Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yemei Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenfan Wei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
18
|
Li YY, Peng YQ, Yang YX, Shi TJ, Liu RX, Luan YY, Yin CH. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155423. [PMID: 38518646 DOI: 10.1016/j.phymed.2024.155423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yi-Qiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Yu-Xi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ting-Juan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Rui-Xia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China
| | - Ying-Yi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| | - Cheng-Hong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital. Beijing 100026, China.
| |
Collapse
|
19
|
Bernasinska-Slomczewska J, Hikisz P, Pieniazek A, Koceva-Chyla A. Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer Cells. Molecules 2024; 29:2503. [PMID: 38893380 PMCID: PMC11173533 DOI: 10.3390/molecules29112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a major health concern and the leading cause of death among women worldwide. Standard treatment often involves surgery, radiotherapy, and chemotherapy, but these come with side effects and limitations. Researchers are exploring natural compounds like baicalin and baicalein, derived from the Scutellaria baicalensis plant, as potential complementary therapies. This study investigated the effects of baicalin and baicalein on the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel, commonly used chemotherapeutic drugs for breast cancer. The analysis included breast cancer cells (MCF-7) and human endothelial cells (HUVEC-ST), to assess potential effects on healthy tissues. We have found that baicalin and baicalein demonstrated cytotoxicity towards both cell lines, with more potent effects observed in baicalein. Both flavonoids, baicalin (167 µmol/L) and baicalein (95 µmol/L), synergistically enhanced the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel in breast cancer cells. In comparison, their effects on endothelial cells were mixed and depended on concentration and time. The results suggest that baicalin and baicalein might be promising complementary agents to improve the efficacy of doxorubicin and docetaxel anticancer activity. However, further research is needed to validate their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Aneta Koceva-Chyla
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland;
| |
Collapse
|
20
|
Lu JQ, Luo ZY, Sun C, Wang SM, Sun D, Huang RJ, Yang X, Ding Y, Wang G. Baicalin administration could rescue high glucose-induced craniofacial skeleton malformation by regulating neural crest development. Front Pharmacol 2024; 15:1295356. [PMID: 38515837 PMCID: PMC10955141 DOI: 10.3389/fphar.2024.1295356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 μM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation.
Collapse
Affiliation(s)
- Jia-Qi Lu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yan Luo
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Chengyang Sun
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Si-Miao Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Dixiang Sun
- Department of Pathology, Mengyin County Hospital of Traditional Chinese Medicine, Linyi, China
| | - Ruo-Jing Huang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou, China
| | - Yong Ding
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
22
|
Ma MY, Niu XJ, Wang Q, Wang SM, Li X, Zhang SH. Evidence and possible mechanism of Scutellaria baicalensis and its bioactive compounds for hepatocellular carcinoma treatment. Ann Med 2024; 55:2247004. [PMID: 38232757 PMCID: PMC10795786 DOI: 10.1080/07853890.2023.2247004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Traditional Chinese medicines have been reported to have outstanding effects in the treating of hepatocellular carcinoma. Scutellaria baicalensis (S. baicalensis) has demonstrated anti-tumor, anti-angiogenic, and anti-inflammatory properties. Baicalein, wogonin, and baicalin are the main pharmacologically bioactive compounds of S. baicalensis. METHODS Eight electronic databases were searched to select articles published from their inception to 30 May 2022. For selected articles, clinical and preclinical data was obtained on the use of S. baicalensis and its bioactive compounds in hepatocellular carcinoma therapy. Statistical analyses were performed using RevMan version 5.3 and Stata software. Quality assessment of the studies was performed using Cochrane and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tools. RESULTS Seven clinical and 17 preclinical in vivo studies along with 31 in vitro studies were included in this research. Meta-analysis showed that a Chinese herbal medicine preparation, with S. baicalensis as the sovereign herb, combined with Transcatheter arterial chemoembolization (TACE) or primary treatment, could lead to a significantly improved tumor objective response rate (Risk ratio (RR) = 1.57, 95% confidence interval (CI): [1.30, 1.90], p < 0.00001). Scutellaria baicalensis-based extracts (standard mean difference (SMD) = -0.86, 95%CI: [-1.20, -0.53], p < 0.00001), baicalein (SMD = -4.80, 95%CI: [-6.66, - 2.95], p < 0.00001), baicalin (SMD = -2.28, 95%CI [-3.26, -1.30], p < 0.00001) and wogonin (SMD = -1.41, 95%CI [-2.26, -0.57], p < 0.00001) slowed tumor growth in vivo. These outcomes might be linked to the mechanism by which S. baicalensis promotes apoptosis, induces autophagy, and blocks the expression of vascular endothelial growth factor (p < 0.05). CONCLUSION Based on experimental and clinical evidence, we believe that S. baicalensis and its bioactive compounds have therapeutic potential and plausible mechanisms of action against hepatocellular carcinoma, in terms of efficacy and safety.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ji Niu
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shou-Mei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Wang R, Wang C, Lu L, Yuan F, He F. Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives. Pharmacol Res 2024; 199:107032. [PMID: 38061594 DOI: 10.1016/j.phrs.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyan Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianheng Lu
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Feng He
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Marques-Santos F, Faria RX, Amendoeira MRR. The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review. Curr Top Med Chem 2024; 24:1960-1999. [PMID: 38952156 DOI: 10.2174/0115680266299409240606062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Toxoplasmosis is a worldwide distributed zoonosis caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms. METHOD Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression. RESULTS The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.
Collapse
Affiliation(s)
- Fabielle Marques-Santos
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| | - Maria Regina Reis Amendoeira
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
25
|
Guo D, Zhu Z, Wang Z, Feng F, Cao Q, Xia Z, Jia X, Lv D, Han T, Chen X. Multi-omics landscape to decrypt the distinct flavonoid biosynthesis of Scutellaria baicalensis across multiple tissues. HORTICULTURE RESEARCH 2024; 11:uhad258. [PMID: 38298899 PMCID: PMC10828779 DOI: 10.1093/hr/uhad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Scutellaria baicalensis Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The S. baicalensis genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of S. baicalensis in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant S. baicalensis through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.
Collapse
Affiliation(s)
- Dandan Guo
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhenyu Zhu
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Feng
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Qi Cao
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhewei Xia
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Xinlei Jia
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Ting Han
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaofei Chen
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| |
Collapse
|
26
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
27
|
Cristaldi C, Saldarriaga Cartagena AM, Ganuza A, Sullivan WJ, Angel SO, Vanagas L. Evaluation of topotecan and 10-hydroxycamptothecin on Toxoplasma gondii: Implications on baseline DNA damage and repair efficiency. Int J Parasitol Drugs Drug Resist 2023; 23:120-129. [PMID: 38043188 PMCID: PMC10730954 DOI: 10.1016/j.ijpddr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.
Collapse
Affiliation(s)
- Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - Ana M Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - William J Sullivan
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM). Chascomús, Provincia de Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| |
Collapse
|
28
|
Bian Q, Li B, Zhang L, Sun Y, Zhao Z, Ding Y, Yu H. Molecular pathogenesis, mechanism and therapy of Cav1 in prostate cancer. Discov Oncol 2023; 14:196. [PMID: 37910338 PMCID: PMC10620365 DOI: 10.1007/s12672-023-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiang Bian
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Bei Li
- Department of Radiological Image, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Luting Zhang
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Yinuo Sun
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Chen Y, Wang Y, Song S, Zhang X, Wu L, Wu J, Li X. Topical Application of Baicalin Combined with Echinacoside Ameliorates Psoriatic Skin Lesions by Suppressing the Inflammation-Related TNF Signaling Pathway and the Angiogenesis-Related VEGF Signaling Pathway. ACS OMEGA 2023; 8:40260-40276. [PMID: 37929119 PMCID: PMC10620902 DOI: 10.1021/acsomega.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BAI), the main active component of Scutellaria baicalensis, has significant anti-inflammatory and antibacterial effects. Echinacoside (ECH), an active component from Echinacea purpurea, has significant antiangiogenesis and antioxidant effects. In previous studies, BAI or ECH has been used for some skin inflammation problems by topical treatment. Psoriasis (PSO) is a common inflammatory skin disease with typical features such as excessive inflammatory response and vascular proliferation in skin lesions. Because of the anti-inflammatory effect of BAI and the antiangiogenic activity of ECH, it is proposed that the combination of BAI and ECH can ameliorate psoriatic skin lesions better than a single component. This study aims to explore the effects and potential mechanisms of BAI combined with ECH on imiquimod (IMQ)-induced psoriatic skin lesions by topical treatment. Transcriptome analysis first showed that the TNF signaling pathway and the VEGF signaling pathway were significantly enriched in IMQ-induced psoriatic skin lesions. Topical application of BAI combined with ECH could ameliorate IMQ-induced skin lesions in mice, especially the better effects of B2-E1 (BAI/ECH = 2:1). Network pharmacology analysis and molecular docking indicated that BAI-treated PSO on the skin by regulating the TNF signaling pathway, and ECH treated PSO on the skin by regulating the VEGF signaling pathway. Meanwhile, the ELISA test and the qPCR assay showed that BAI combined with ECH could inhibit the expression of key cytokines and genes related to the TNF signaling pathway and the VEGF signaling pathway. Zebrafish experiments demonstrated the anti-inflammatory and antiangiogenic effects of BAI combined with ECH and revealed the potential mechanisms associated with regulating the inflammation-related TNF signaling pathway and the angiogenesis-related VEGF signaling pathway. This suggested that BAI combined with ECH may be a promising topical agent to ameliorate psoriatic skin lesions in the future.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xiaoli Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| |
Collapse
|
30
|
Suhail M, AlZahrani WM, Shakil S, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Analysis of some flavonoids for inhibitory mechanism against cancer target phosphatidylinositol 3-kinase (PI3K) using computational tool. Front Pharmacol 2023; 14:1236173. [PMID: 37900167 PMCID: PMC10612336 DOI: 10.3389/fphar.2023.1236173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cancer has been one of the leading causes of mortality worldwide over the past few years. Some progress has been made in the development of more effective cancer therapeutics, resulting in improved survival rates. However, the desired outcome in the form of successful treatment is yet to be achieved. There is high demand for the development of innovative, inexpensive, and effective anticancer treatments using natural resources. Natural compounds have been increasingly discovered and used for cancer therapy owing to their high molecular diversity, novel biofunctionality, and minimal side effects. These compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell growth, control cell cycle progression, and block several tumor-promoting signaling pathways. PI3K is an important upstream protein of the PI3K-Akt-mTOR pathway and a well-established cancer therapeutic target. This study aimed to explore the small molecules, natural flavonoids, viz. quercetin, luteolin, kaempferol, genistein, wogonin, daidzein, and flavopiridol for PI3Kγ kinase activity inhibition. In this study, the binding pose, interacting residues, molecular interactions, binding energies, and dissociation constants were investigated. Our results showed that these flavonoids bound well with PI3Kγ with adequate binding strength scores and binding energy ranging from (-8.19 to -8.97 Kcal/mol). Among the explored ligands, flavopiridol showed the highest binding energy of -8.97 Kcal/mol, dock score (-44.40), and dissociation constant term, p K d of 6.58 against PI3Kγ. Based on the above results, the stability of the most promising ligand, flavopiridol, against PI3Kγ was evaluated by molecular dynamics simulations for 200 ns, confirming the stable flavopiridol and PI3Kγ complex. Our study suggests that among the selected flavonoids specifically flavopiridol may act as potential inhibitors of PI3Kγ and could be a therapeutic alternative to inhibit the PI3Kγ pathway, providing new insights into rational drug discovery research for cancer therapy.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Chauhan D, Yadav P, Rana R, Kalleti N, Gayen JR, Wahajuddin, Rath SK, Mugale MN, Mitra K, Chourasia MK. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm 2023; 643:123209. [PMID: 37422142 DOI: 10.1016/j.ijpharm.2023.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
33
|
Kusakabe Y, Moriya SS, Sugiyama T, Miyata Y. Isolation and identification of the new baicalin target protein to develop flavonoid structure-based therapeutic agents. Bioorg Med Chem 2023; 90:117362. [PMID: 37320992 DOI: 10.1016/j.bmc.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Proteins are vital constituents of all living organisms. As many therapeutic agents alter the activity of functional proteins, identifying functional target proteins of small bioactive molecules isessential for the rational design of stronger medicines. Flavonoids with antioxidant, anti-allergy, and anti-inflammatory effects are expected to have preventive effects for several diseases closely related to oxidation and inflammation, including heart disease, cancer, neurodegenerative disorders, and eye diseases. Therefore, identifying the proteins involved in the pharmacological actions of flavonoids, and designing a flavonoid structure-based medicine that strongly and specifically inhibits flavonoid target proteins, could aid the development of more effective medicines for treating heart disease, cancer, neurodegenerative disorders, and ocular diseases with few side effects. To isolate the flavonoid target protein, we conducted a novel affinity chromatography in a column wherein baicalin, a representative flavonoid, was attached to Affi-Gel 102. Through affinity chromatography and nano LC-MS/MS, we identified GAPDH as a flavonoid target protein. Then, we performed fluorescence quenching and an enzyme inhibition assay to experimentally confirmbaicalin's binding affinity for, and inhibition of, GAPDH. We also conducted in silico docking simulations to visualize the binding modes of baicalin and the newly identified flavonoid target protein, GAPDH. From the results of this study, it was considered that one of the reasons why baicalin exhibits the effects on cancer and neurodegenerative diseases is that it inhibits the activity of GAPDH. In summary, we showed that Affi-Gel102 could quickly and accurately isolate the target protein for bioactive small molecules, without the need for isotopic labeling or a fluorescent probe. By using the method presented here, it was possible to easily isolate the target protein of a medicine containing a carboxylic acid.
Collapse
Affiliation(s)
- Yoshio Kusakabe
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan.
| | | | - Toru Sugiyama
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiki Miyata
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
34
|
Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119236. [PMID: 37298188 DOI: 10.3390/ijms24119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Flavonoids are polyphenolic phytochemical compounds found in many plants, fruits, vegetables, and leaves. They have a multitude of medicinal applications due to their anti-inflammatory, antioxidative, antiviral, and anticarcinogenic properties. Furthermore, they also have neuroprotective and cardioprotective effects. Their biological properties depend on the chemical structure of flavonoids, their mechanism of action, and their bioavailability. The beneficial effects of flavonoids have been proven for a variety of diseases. In the last few years, it is demonstrated that the effects of flavonoids are mediated by inhibiting the NF-κB (Nuclear Factor-κB) pathway. In this review, we have summarized the effects of some flavonoids on the most common diseases, such as cancer, cardiovascular, and human neurodegenerative diseases. Here, we collected all recent studies describing the protective and prevention role of flavonoids derived from plants by specifically focusing their action on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
35
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
36
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
37
|
Porras SM, Saavedra RA, Sierra LJ, González RT, Martínez JR, Stashenko EE. Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia. Molecules 2023; 28:molecules28083474. [PMID: 37110708 PMCID: PMC10142030 DOI: 10.3390/molecules28083474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Plants of the genus Scutellaria (Lamiaceae) have a wide variety of bioactive secondary metabolites with diverse biological properties, e.g., anti-inflammatory, antiallergenic, antioxidant, antiviral, and antitumor activities. The chemical composition of the hydroethanolic extracts, obtained from dried plants of S. incarnata, S. coccinea, and S. ventenatii × S. incarnata, was determined by UHPLC/ESI-Q-Orbitrap-MS. The flavones were found in a higher proportion. Baicalin and dihydrobaicalein-glucuronide were the major extract components in S. incarnata (287.127 ± 0.005 mg/g and 140.18 ± 0.07 mg/g), in S. coccinea (158.3 ± 0.34 mg/g and 51.20 ± 0.02 mg/g), and in S. ventenatii × S. incarnata (186.87 ± 0.01 mg/g and 44.89 ± 0.06 mg/g). The S. coccinea extract showed the highest antioxidant activity in the four complementary techniques employed to evaluate all extracts: ORAC (3828 ± 3.0 µmol Trolox®/g extract), ABTS+• (747 ± 1.8 µmol Trolox®/g extract), online HPLC-ABTS+• (910 ± 1.3 µmol Trolox®/g extract), and β-carotene (74.3 ± 0.8 µmol Trolox®/g extract).
Collapse
Affiliation(s)
- Silvia M Porras
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Rogerio A Saavedra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Lady J Sierra
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Robert T González
- Research Group on Orchids and Ecology, Universidad Nacional de Colombia, Carrera 32, Palmira 763533, Colombia
| | - Jairo R Martínez
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Research Center for Chromatography and Mass Spectrometry (CROM-MASS), Center for Biomolecules (CIBIMOL), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
38
|
Qu YQ, Song LL, Xu SW, Yu MSY, Kadioglu O, Michelangeli F, Law BYK, Efferth T, Lam CWK, Wong VKW. Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo. Pharmacol Res 2023; 191:106769. [PMID: 37061145 DOI: 10.1016/j.phrs.2023.106769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKβ-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.
Collapse
Affiliation(s)
- Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lin-Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Su-Wei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Basic Medicine of Zhuhai Health School, Zhuhai, China
| | - Margaret Sum Yee Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
39
|
Morshed AKMH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, Hasibuzzaman MA, Rahaman TI, Mia MAR, Shing P, Sohel M, Bibi S, Dey D, Biswas P, Hasan MN, Ming LC, Tan CS. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers (Basel) 2023; 15:2128. [PMID: 37046789 PMCID: PMC10093079 DOI: 10.3390/cancers15072128] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein's anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology, Academy of Medical Science, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Supti Paul
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Arafat Hossain
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Tuli Basak
- Department of Genetic Engineering and Biotechnology, Faculty of Science and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Md. Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (Pusat ALAM), Universiti Malaysia Pahang, Gambang, Kuantan 26300, Malaysia
| | - Md. Mehedi Hasan
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Pollob Shing
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia;
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| |
Collapse
|
40
|
Hsieh YY, Lee KC, Cheng KC, Lee KF, Yang YL, Chu HT, Lin TW, Chen CC, Hsieh MC, Huang CY, Kuo HC, Teng CC. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030764. [PMID: 36979011 PMCID: PMC10045953 DOI: 10.3390/antiox12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Antrodin C, a maleimide derivative compound isolated from the ethanol extract of the mycelium of Antrodia cinnamomea, is an endemic fungus of Taiwan and a potential chemoprotective agent. However, the molecular mechanisms underlying the mode of action of antrodin C on cancer cells, especially in human colorectal cancer (CRC), remain unclear. METHODS The cell death and ROS of the antrodin-C-treated HCT-116 cells were measured by annexin V-FITC/propidium iodide staining, DCFDA, and Fluo-3 fluorescence staining assays. Moreover, signaling molecules regulating TNFα cell death pathways and ROS/AKT/ERK/P38 pathways were also detected in cells treated with antrodin C by Western blotting and chromatin immunoprecipitation. The effects of antrodin C were determined in HCT-116 cell xenograft animal models in terms of tumor volumes and histopathological evaluation. RESULTS Treatment with antrodin C triggered the activation of extrinsic apoptosis pathways (TNFα, Bax, caspase-3, and -9), and also suppressed the expression of anti-apoptotic molecules Bcl-2 in HCT-116 cells in a time-dependent manner. Antrodin C also decreased cell proliferation and growth through the inactivation of cyclin D1/cyclin for the arrest of the cell cycle at the G1 phase. The activation of the ROS/AKT/ERK/P38 pathways was involved in antrodin-C-induced transcriptional activation, which implicates the role of the histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFα promoters. Immunohistochemical analyses revealed that antrodin C treatment significantly induced TNFα levels, whereas it decreased the levels of PCNA, cyclin D1, cyclin E, and MMP-9 in an in vivo xenograft mouse model. Thus, antrodin C induces cell apoptosis via the activation of the ROS/AKT/ERK/P38 signaling modules, indicating a new mechanism for antrodin C to treat CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
41
|
Zhang X, Xie J, Cao S, Zhang H, Pei J, Bu S, Zhao L. Efficient production of the glycosylated derivatives of baicalein in engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:2831-2842. [PMID: 36930276 DOI: 10.1007/s00253-023-12464-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside have been proven to possess many pharmacological activities and are potential candidate drug leads and herb supplements. However, their further development is largely limited due to low content in host plants. Few studies reported that both bioactive plant components are prepared through the bioconversion of baicalein that is considered as the common biosynthetic precursor of both compounds. Herein, we constructed a series of the engineered whole-cell bioconversion systems in which the deletion of competitive genes and the introduction of exogenous UDP-glucose supply pathway, glucosyltransferase, rhamnosyltransferase, and the UDP-rhamnose synthesis pathway are made. Using these engineered strains, the precursor baicalein is able to be transformed into baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, with high-titer production, respectively. The further optimization of fermentation conditions led to the final production of 568.8 mg/L and 877.0 mg/L for baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, respectively. To the best of our knowledge, it is the highest production in preparation of baicalein-7-O-glucoside from baicalein so far, while the preparation of baicalein-7-O-rhamnoside is the first reported via bioconversion approach. Our study provides a reference for the industrial production of high-value products baicalein-7-O-glucoside and baicalein-7-O-rhamnoside using engineered E. coli. KEY POINTS: • Integrated design for improving the intracellular UDP-glucose pool • High production of rare baicalein glycosides in the engineered E. coli • Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
| | - Shiping Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
42
|
Wang J, Zeng X, Yin D, Yin L, Shen X, Xu F, Dai Y, Pan X. In silico and in vitro evaluation of antiviral activity of wogonin against main protease of porcine epidemic diarrhea virus. Front Cell Infect Microbiol 2023; 13:1123650. [PMID: 37009514 PMCID: PMC10050881 DOI: 10.3389/fcimb.2023.1123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The high mortality rate of weaned piglets infected with porcine epidemic diarrhea virus (PEDV) poses a serious threat to the pig industry worldwide, demanding urgent research efforts related to developing effective antiviral drugs to prevent and treat PEDV infection. Small molecules can possibly prevent the spread of infection by targeting specific vital components of the pathogen’s genome. Main protease (Mpro, also named 3CL protease) plays essential roles in PEDV replication and has emerged as a promising target for the inhibition of PEDV. In this study, wogonin exhibited antiviral activity against a PEDV variant isolate, interacting with the PEDV particles and inhibiting the internalization, replication and release of PEDV. The molecular docking model indicated that wogonin was firmly embedded in the groove of the active pocket of Mpro. Furthermore, the interaction between wogonin and Mpro was validated in silico via microscale thermophoresis and surface plasmon resonance analyses. In addition, the results of a fluorescence resonance energy transfer (FRET) assay indicated that wogonin exerted an inhibitory effect on Mpro. These findings provide useful insights into the antiviral activities of wogonin, which could support future research into anti-PEDV drugs.`
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
- *Correspondence: Xiaocheng Pan, ; Yin Dai,
| |
Collapse
|
43
|
Belaiba M, Aldulaijan S, Messaoudi S, Abedrabba M, Dhouib A, Bouajila J. Evaluation of Biological Activities of Twenty Flavones and In Silico Docking Study. Molecules 2023; 28:molecules28062419. [PMID: 36985391 PMCID: PMC10052652 DOI: 10.3390/molecules28062419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
This work aimed to evaluate the biological activities of 20 flavones (M1 to M20) and discuss their structure–activity relationships. In vitro assays were established to assess their numerous biological activities (anti-α-amylase, anti-acetylcholinesterase, anti-xanthine oxidase, anti-superoxide dismutase, and anticancer cell lines (HCT-116, MCF7, OVCAR-3, IGROV-1, and SKOV-3 cells lines)). An in silico docking study was also established in order to find the relationship between the chemical structure and the biological activities. In vitro tests revealed that M5 and M13 were the most active in terms of anti-α-amylase activity (IC50 = 1.2 and 1.4 µM, respectively). M17 was an inhibitor of xanthine oxidase (XOD) and performed better than the reference (allopurinol), at IC50 = 0.9 µM. M7 presented interesting anti-inflammatory (IC50 = 38.5 µM), anti-supriode dismutase (anti-SOD) (IC50 = 31.5 µM), and anti-acetylcholinesterase (IC50 = 10.2 µM) activities. Those abilities were in concordance with its high scavenging activity in antioxidant ABTS and DPPH assays, at IC50 = 6.3 and 5.2 µM, respectively. Selectivity was detected regarding cytotoxic activity for those flavones. M1 (IC50 = 35.9 µM) was a specific inhibitor to the MCF7 cancer cell lines. M3 (IC50 = 44.7 µM) and M15 (IC50 = 45.6 µM) were particularly potent for the OVCAR-3 cell line. M14 (IC50 = 4.6 µM) contributed more clearly to inhibiting the colon cancer cell line (HCT116). M7 (IC50 = 15.6 µM) was especially active against the ovarian SKOV human cancer cell line. The results of the biological activities were supported by means of in silico molecular docking calculations. This investigation analyzed the contribution of the structure–activity of natural flavones in terms of their biological properties, which is important for their future application against diseases.
Collapse
Affiliation(s)
- Meriam Belaiba
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
- Laboratoire des Matériaux Molécules et Applications, Université Tunis Carthage, IPEST, La Marsa 2070, Tunisia
| | - Sarah Aldulaijan
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sabri Messaoudi
- Laboratoire des Matériaux Molécules et Applications, Université Tunis Carthage, IPEST, La Marsa 2070, Tunisia
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Manef Abedrabba
- Laboratoire des Matériaux Molécules et Applications, Université Tunis Carthage, IPEST, La Marsa 2070, Tunisia
| | - Adnene Dhouib
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
- Correspondence: ; Tel./Fax: +33-562256885
| |
Collapse
|
44
|
Srivastava S, Mathew J, Pandey AC. Baicalein—A review on its molecular mechanism against breast cancer and delivery strategies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
45
|
Dogan Z, Kutluay VM, Genc Y, Saracoglu I. Interactions between phenolic constituents of Scutellaria salviifolia and key targets associated with inflammation: network pharmacology, molecular docking analysis and in vitro assays. J Biomol Struct Dyn 2023; 41:1281-1294. [PMID: 34939529 DOI: 10.1080/07391102.2021.2019119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Scutellaria salviifolia Benth. (SS), an endemic plant for Turkey, is used for gastric ailments as folk medicine. In this study, we aimed to uncover the underlying molecular mechanisms with the help of network pharmacology and molecular docking analysis in the inflammation processes of gastric ailments. Gene enrichment analysis and target screening were carried out. Experimental validation was performed via cytokines of nitric oxide (NO) and interleukin-6 (IL-6) in LPS stimulated RAW 264.7 cells. Furthermore, antioxidant activity studies were performed by radical scavenging effects on different radicals. A total of 144 targets were listed for the isolated compounds where 26 of them were related to selected inflammation targets. According to the gene enrichment analysis, HIF1 signaling pathway and TNF signaling pathway were found to be involved in inflammation. We also defined AKT1, TNF, EGFR, and COX2 as key targets due to the protein-protein interactions of 26 common targets. The extract inhibited NO and IL-6 production at 100 and 200 µg/mL, while flavonoid-rich fraction possessed significant anti-inflammatory activity at the concentration of 50 and 100 µg/mL via NO and IL-6 production, respectively. It is thought that the anti-inflammatory effects of extracts, fractions and pure compounds were achieved by reducing NO and IL-6 levels via regulating the NF-κB pathway or reducing NO production by suppressing iNOS through the HIF-1 pathway when evaluated together with the results of network analysis and literature. Anti-inflammatory activities of the extract and fractions were promising and comparably with S. baicalensis, commonly used for its anti-inflammatory activity.
Collapse
Affiliation(s)
- Zeynep Dogan
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Vahap Murat Kutluay
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Yasin Genc
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Iclal Saracoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| |
Collapse
|
46
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
47
|
Kwiecień I, Łukaszyk A, Miceli N, Taviano MF, Davì F, Kędzia E, Ekiert H. In Vitro Cultures of Scutellaria brevibracteata subsp. subvelutina as a Source of Bioactive Phenolic Metabolites. Molecules 2023; 28:1785. [PMID: 36838774 PMCID: PMC9964101 DOI: 10.3390/molecules28041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Some of the more than 350 Scutellaria species, such as S. baicalensis and S. lateriflora, have been used in traditional medicine and today play an important role in official phytotherapy. Other species have been less investigated, and their therapeutic potential is unknown. This is one of the few studies on Scutellaria brevibracteata subsp. subvelutina, and the first research of this species' in vitro cultures. The aim of this study was to establish an in vitro culture and analyse its phytochemical profile and biological activity. In the methanolic extracts from biomass cultured on six solid Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in the range 0.5-3 mg/L analysed by HPLC, the presence of specific flavonoids (baicalein, baicalin, wogonin, wogonoside, scutellarin, chrysin), phenylpropanoid glycosides (verbascoside, isoverbascoside), and phenolic acids (p-hydroxybenzoic, caffeic, ferulic, m-coumaric acids) was confirmed. The dominant metabolites were wogonoside and verbascoside with the highest content of 346 and 457 mg/100 g DW, respectively. Thus, the extract with the highest content of bioactive metabolites was selected for further research and subjected to evaluation of antioxidant and antimicrobial potential. The extract exhibited good free radical scavenging activity (IC50 = 0.92 ± 0.01 mg/mL) and moderate reducing power and chelating activity. The brine shrimp lethality bioassay proved its lack of biotoxicity. Antimicrobial activity was tested against sixteen strains of Gram-positive and Gram-negative bacteria and fungi. The strongest growth inhibitory activity was observed against Trichophyton tonsurans.
Collapse
Affiliation(s)
- Inga Kwiecień
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Aleksandra Łukaszyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Elżbieta Kędzia
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants, National Research Institute, 71B Wojska Polskiego St., 60-630 Poznań, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| |
Collapse
|
48
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
49
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
50
|
Comparative Study of the Flavonoid Content in Radix Scutellaria from Different Cultivation Areas in China. Int J Anal Chem 2023; 2023:3754549. [PMID: 36820244 PMCID: PMC9938789 DOI: 10.1155/2023/3754549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/13/2023] Open
Abstract
Scutellariabaicalensis Georgi, an important perennial herb, is widely distributed and used all over the world. The root of S. baicalensis (Radix Scutellaria) is rich in flavonoids with a variety of bioactive effects and is widely used in clinic. The different geographical and climatic conditions of different cultivated areas of S. baicalensis lead to the differences of the main components in Radix Scutellaria. The main objective of this study was to evaluate the difference of flavonoid content in Radix Scutellaria from different cultivated areas in China. The mobile phase system, elution gradient, detection wavelength, and other chromatographic conditions for high-performance liquid chromatography-diode array detection (HPLC-DAD) determination of 8 flavonoids in Radix Scutellaria were optimized. The contents of flavonoids in 38 samples of Radix Scutellaria collected from seven main genuine cultivated areas were determined, and the correlation between the content, cultivated area, and the biological activities of Radix Scutellaria was compared. The results implied that baicalin, wogonoside, and baicalein were the three main flavonoids with the highest contents in Radix Scutellaria. The content of flavonoids in different cultivated areas was very different, which had significant regionality and was closely related to the natural conditions of various places. The antioxidant and antitumor activities of the extract of Radix Scutellaria were closely related to the content of flavonoids, and high contents of baicalin, wogonoside, and baicalein positively improved biological activities.
Collapse
|