1
|
Netti GS, De Luca F, Camporeale V, Khalid J, Leccese G, Troise D, Sanguedolce F, Stallone G, Ranieri E. Liquid Biopsy as a New Tool for Diagnosis and Monitoring in Renal Cell Carcinoma. Cancers (Basel) 2025; 17:1442. [PMID: 40361369 PMCID: PMC12070982 DOI: 10.3390/cancers17091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Renal cell carcinoma (RCC) presents a significant diagnostic challenge, particularly in small renal masses. The search for non-invasive screening methods and biomarkers has directed research toward liquid biopsy, which focuses on microRNAs (miRNAs), exosomes, and circulating tumor cells (CTCs). miRNAs are small non-coding RNA molecules that show considerable dysregulation in RCC, and they have potential for both diagnostic and prognostic applications. Research has highlighted their utility on biofluids, such as plasma, serum, and urine, in detecting RCC and characterizing its subtypes. Promising miRNA signatures have been associated with overall survival, suggesting their potential importance in the management of RCC. Exosomes, which carry a variety of molecular components, including miRNAs, are emerging as valuable biomarkers, whereas CTCs, released from primary tumors into the bloodstream, provide critical information on cancer progression. However, translation of these findings into clinical practice requires additional validation and standardization through large-scale studies and robust evidence. Although there are currently no approved diagnostic tests for RCC, the future potential of liquid biopsy in monitoring, treatment decision-making, and outcome prediction in patients with this disease is significant. This review examined and discussed recent developments in liquid biopsy for RCC, assessing both the strengths and limitations of these approaches for managing this disease.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Federica De Luca
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Valentina Camporeale
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Javeria Khalid
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Giorgia Leccese
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Dario Troise
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Unit of Nephrology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Francesca Sanguedolce
- Unit of Pathology, Department of Clinical and Experimental Medicine, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Giovanni Stallone
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Unit of Nephrology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| |
Collapse
|
2
|
Zhang B, Pang Y. Exploring the genetic profiles linked to senescence in thyroid tumors: insights on predicting disease progression and immune responses. Front Oncol 2025; 15:1545656. [PMID: 39980566 PMCID: PMC11839597 DOI: 10.3389/fonc.2025.1545656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Thyroid cancer (THCA) is the most common endocrine tumor. Research on Cell Senescence Associated Genes (CSAGs), which impact many cancers, remains limited in the THCA field. Methods In this study, we downloaded THCA sample data from several public databases and selected a set of CSAGs for subsequent analysis. Differential expression genes (DEGs) obtained through differential analysis were intersected with prognostic genes identified by Cox regression analysis to explore the correlation among these crossed genes. We constructed a prognostic model using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and verified its efficacy. Kaplan-Meier survival curves were plotted, and Receiver Operating Characteristic (ROC) curves rigorously confirmed the accuracy of model predictions. Results To evaluate the predictive power of prognostic models across different phenotypic traits, we performed survival analysis, Gene Set Enrichment Analysis (GSEA), and immune-related differential analysis. Differences in tumor mutation burden (TMB) and treatment response between high-risk and low-risk patient groups were also analyzed. Finally, the predictive effect of our model on immunotherapy response was validated, showing promising results for THCA patients. Discussion Our study enhances the understanding of THCA cell senescence and provides new therapeutic insights. The proposed model not only accurately predicts patient survival but also reveals factors related to immunotherapy response, offering new perspectives for personalized medicine.
Collapse
Affiliation(s)
- Baoliang Zhang
- Department of Emergency, Tongji Hospital of Tongji University, Shanghai, China
| | - Yanping Pang
- Department of Ultrasound, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
3
|
Fan S, Yuan Y, Su Y, Sang D. Advanced anaplastic thyroid carcinoma with positive expression of PD-L1 response to immune checkpoint inhibitors: A case report. SAGE Open Med Case Rep 2025; 13:2050313X241313084. [PMID: 39877673 PMCID: PMC11773542 DOI: 10.1177/2050313x241313084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is one rare type of thyroid carcinoma without standard systemic treatment for advanced disease. Recent evidence has demonstrated promising efficacy of immune checkpoint inhibitors, particularly those targeting programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), in a variety of solid tumors. However, there have been no research of immune checkpoint inhibitors plus chemotherapy in ATC. Here, we present the case of a 37-year-old man with metastatic ATC with positive PD-L1 expression, who achieved long-term remission of 34 months after later-line treatment with zimberelimab (a PD-1 inhibitor) and nab-paclitaxel, followed by single-agent zimberelimab maintenance therapy. After three cycles of the combination treatment, the thyroid lesion and the liver metastases shrank dramatically, leading to the best overall response of partial remission. PD-L1 expression may serve as a potential biomarker for tumor response to immune checkpoint inhibitors in ATC. Our review highlights the need for further studies investigating the role of PD-L1 status as biomarker to predict the prognosis of immunotherapy in the treatment of ATC.
Collapse
Affiliation(s)
- Shanmin Fan
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China
| | - Yang Yuan
- Department of Pathology, Emergency General Hospital, Beijing, China
| | - Yanfang Su
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China
| | - Die Sang
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, China
| |
Collapse
|
4
|
Deng G, Wang P, Su R, Sun X, Wu Z, Huang Z, Gu L, Yu H, Zhao Z, He Y, Huo M, Zhang C, Yin S. SPI1 +CD68 + macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies. J Immunother Cancer 2024; 12:e009983. [PMID: 39455096 PMCID: PMC11529461 DOI: 10.1136/jitc-2024-009983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have been demonstrated to be associated with tumor progression. However, the different subpopulations of TAMs and their roles in gastric cancer (GC) remain poorly understood. This study aims to assess the effects of Spi-1 proto-oncogene (SPI1)+CD68+ TAMs in GC. METHODS The distribution of SPI1+CD68+ TAMs in GC tissue was estimated by immunohistochemistry, immunofluorescence, and flow cytometry. Single-cell transcriptome analysis and multiplex fluorescence immunohistochemistry were applied to explore the role of SPI1+CD68+ TAMs in an immune contexture. SPI1 overexpression or knockdown cells were constructed to evaluate its role in macrophage polarization and angiogenesis in vitro and in vivo. Chromatin immunoprecipitation was used to verify the mechanism of SPI1 transcriptional function. The effect of combined antiangiogenic and immunotherapy was further validated using mouse peritoneal metastasis models. RESULTS Single-cell transcriptome analysis and immunohistochemistry demonstrated that SPI1 was expressed in macrophages, with a higher enrichment in metastatic lesions than in primary tumors. Higher SPI1+CD68+ TAMs infiltration was associated with poor overall survival. Mechanically, SPI1 promoted the M2-type macrophage polarization. SPI1 could bind to the promoter of vascular endothelial growth factor A and facilitate angiogenesis. Moreover, the level of SPI1+CD68+ TAMs infiltration was closely related to the efficacy of immunotherapy, especially when combined with antiangiogenic therapy. CONCLUSIONS The present study showed that SPI1+CD68+ TAMs are a promising biomarker for predicting prognosis, antiangiogenic drug sensitivity, and combination target of immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rishun Su
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuezeng Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhen Wu
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenzhen Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Ciccarese C, Mollica V, Marandino L, Palumbo C, Campi R, Amparore D. Adjuvant pembrolizumab prolongs overall survival in renal cell carcinoma at high-risk of recurrence after nephrectomy. Can we do better than this? Minerva Urol Nephrol 2024; 76:540-544. [PMID: 39320246 DOI: 10.23736/s2724-6051.24.06114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology Unit, Department of Medical and Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Veronica Mollica
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy -
| | - Laura Marandino
- Medical Oncology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Riccardo Campi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Urological Robotic Surgery and Renal Transplantation Unit, Careggi Hospital, University of Florence, Florence, Italy
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
6
|
Uinarni H, Oghenemaro EF, Menon SV, Hjazi A, Ibrahim FM, Kaur M, Zafarjonovna AZ, Deorari M, Jabir MS, Zwamel AH. Breaking Barriers: Nucleic Acid Aptamers in Gastrointestinal (GI) Cancers Therapy. Cell Biochem Biophys 2024; 82:1763-1776. [PMID: 38916791 DOI: 10.1007/s12013-024-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Conventional cancer therapies can have significant adverse effects as they are not targeted to cancer cells and may damage healthy cells. Single-stranded oligonucleotides assembled in a particular architecture, known as aptamers, enable them to attach selectively to target areas. Usually, they are created by Systematic Evolution of Ligand by Exponential enrichment (SELEX), and they go through a rigorous pharmacological revision process to change their therapeutic half-life, affinity, and specificity. They could thus offer a viable substitute for antibodies in the targeted cancer treatment market. Although aptamers can be a better choice in some situations, antibodies are still appropriate for many other uses. The technique of delivering aptamers is simple and reasonable, and the time needed to manufacture them is relatively brief. Aptamers do not require animals or an immune response to be produced, in contrast to antibodies. When used as a medication, aptamers can directly suppress tumor cells. As an alternative, they can be included in systems for targeted drug delivery that administer medications specifically to tumor cells while reducing toxicity to healthy cells. The most recent and cutting-edge methods for treating gastrointestinal (GI) tract cancer with aptamers will be covered in this review, with a focus on targeted therapy as a means of conquering resistance to traditional medicines.
Collapse
Affiliation(s)
- Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
- Radiology department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fatma Magdi Ibrahim
- Assisstant professor, Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Lecturer, geriatric nursing, Mansoura University, Mansoura, Egypt
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Majid S Jabir
- Department of applied sciences, University of technology, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Liu S, Lv S, Li X, Lu W, Chen S. The signature genes of cuproptosis associates with tumor immune microenvironment and predicts prognosis in kidney renal clear cell carcinoma. Front Oncol 2024; 14:1409620. [PMID: 39206152 PMCID: PMC11349642 DOI: 10.3389/fonc.2024.1409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cuproptosis is a new form of cell death, which has great potential to be developed in tumors treatment. Our study aimed to explore the predictive value of cuproptosis-related genes (CRGs) in various cancers, with a focus on kidney renal clear cell carcinoma (KIRC). Method A total of 9502 pan-cancer patients from TCGA cohort were enrolled. The relationships between CRGs and overall survival (OS) or disease-free survival (DFS) were analyzed. Gene Set Variation Analysis (GSVA) enrichment analysis was performed to explore the expression differences of CRGs. Multivariate Cox regression analysis was used to evaluate the association between GSVA scores and patient survival. KEGG and GO analyses were employed to identify the biological functions and pathways. The expression and prognostic characteristics of FDX1 were examined to evaluate the correlation between FDX1 and KIRC. Cell experiments were conducted to verify whether FDX1 was involved in cuproptosis of Caki-1 cells induced by Elesclomol. Results Positive cuproptosis signature genes(pos.cu.sig) exhibited the correlation with prognosis in KIRC, and all of these genes showed differential expression between KIRC and normal tissues. The GSVA score of pos.cu.sig was associated with excellent survival (HR=0.61, P<0.05), which can also serve as an independent prognostic factor for KIRC. There was a close correlation between pos.cu.sig and the tumor immune microenvironment in KIRC by KEGG and GO analysis. FDX1 expression was correlated with KIRC grade and positively associated with prognosis in KIRC patients. Compared with the control group, cell proliferation and migration were significantly inhibited, FDX1 expression was up-regulated, and Fe-S cluster protein content was decreased of Caki-1 cells after Elesclomol treatment. Conclusions This study provides compelling evidence that cuproptosis is closely linked to the prognosis of KIRC. FDX1 holds promise as a viable biomarker and therapeutic target for assessing the effectiveness of tumor immunotherapy in KIRC.
Collapse
Affiliation(s)
- Shuhan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijie Lv
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiguo Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengjie Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
9
|
Wang L, Hou J, Cao P, Yao Z, Wang S, Zhang Y, Wang S, Yuan H, Liu L. Design, Synthesis, and Biological Evaluation of Chroman Derivatives as PD-1/PD-L1 Antagonists. J Chem Inf Model 2024; 64:4877-4896. [PMID: 38856697 DOI: 10.1021/acs.jcim.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has emerged as a promising therapeutic target for various cancers due to its crucial role in promoting tumor immune evasion. Here, we report a novel class of chroman-like small-molecule PD-L1 inhibitors exhibiting significant activity in inhibiting the PD-1/PD-L1 interaction. Employing a "ring-close" strategy for conformational restriction, we have achieved compound C27, which demonstrates superior PD-1/PD-L1 inhibitory activity compared to the positive control. Molecular dynamics simulation and binding free energy calculation predict that (R)-C27 with inhibitory activity surpassed (S)-C27. The experimental results from bioassay and X-ray structural analysis corroborate these findings. All these results collectively indicate that (R)-C27 is a promising lead compound deserving further exploration.
Collapse
Affiliation(s)
- Luosen Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Hou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiying Yao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shijun Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuying Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, Hefei 230000, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Chmiest D, Podavini S, Ioannidou K, Vallois D, Décaillet C, Gonzalez M, Quadroni M, Blackney K, Schairer R, de Leval L, Thome M. PD1 inhibits PKCθ-dependent phosphorylation of cytoskeleton-related proteins and immune synapse formation. Blood Adv 2024; 8:2908-2923. [PMID: 38513140 PMCID: PMC11176957 DOI: 10.1182/bloodadvances.2023011901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The inhibitory surface receptor programmed cell death protein 1 (PD1) is a major target for antibody-based cancer immunotherapies. Nevertheless, a substantial number of patients fail to respond to the treatment or experience adverse effects. An improved understanding of intracellular pathways targeted by PD1 is thus needed to develop better predictive and prognostic biomarkers. Here, via unbiased phosphoproteome analysis of primary human T cells, we demonstrate that PD1 triggering inhibited the phosphorylation and physical association with protein kinase Cθ (PKCθ) of a variety of cytoskeleton-related proteins. PD1 blocked activation and recruitment of PKCθ to the forming immune synapse (IS) in a Src homology-2 domain-containing phosphatase-1/2 (SHP1/SHP2)-dependent manner. Consequently, PD1 engagement led to impaired synaptic phosphorylation of cytoskeleton-related proteins and formation of smaller IS. T-cell receptor induced phosphorylation of the PKCθ substrate and binding partner vimentin was long-lasting and it could be durably inhibited by PD1 triggering. Vimentin phosphorylation in intratumoral T cells also inversely correlated with the levels of the PD1 ligand, PDL1, in human lung carcinoma. Thus, PKCθ and its substrate vimentin represent important targets of PD1-mediated T-cell inhibition, and low levels of vimentin phosphorylation may serve as a biomarker for the activation of the PD1 pathway.
Collapse
Affiliation(s)
- Daniela Chmiest
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Vallois
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chantal Décaillet
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Kevin Blackney
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Margot Thome
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
11
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
12
|
Xi P, Zhang Z, Liu Y, Nie Y, Gong B, Liu J, Huang H, Liu Z, Sun T, Xie W. Multidimensional comprehensive and integrated analysis of the potential function of TMEM25 in renal clear cell carcinoma with low expression status. Aging (Albany NY) 2024; 16:367-388. [PMID: 38189809 PMCID: PMC10817401 DOI: 10.18632/aging.205372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Transmembrane 25(TMEM25) stands out as a potential prognostic biomarker and therapeutic target in the realm of cancer, yet its precise mechanism of action within clear cell renal cell carcinoma (ccRCC) remains unclear. MATERIALS AND METHODS Gene expression data and clinically relevant information extracted from The Cancer Genome Atlas (TCGA) and Gene expression omnibus (GEO) databases unveil the expression patterns of TMEM25 within renal clear cell carcinoma, which reveals its prognostic and diagnostic significance. The protein expression data is available via the Human Protein Atlas (HPA) database. Further, qPCR experiments conducted on cells and tissues provide strong evidence of the gene's expression status. Additionally, they explore the correlations between TMEM25 expression and DNA methylation, gene mutations, immune cell infiltration, and drug sensitivity within this specific tumor context. RESULTS At both the RNA and protein levels, TMEM25 displays a noteworthy downregulation in expression, which is consistently linked to an unfavorable prognosis. Receiver Operating Characteristic (ROC) curve analysis, univariate and multivariate Cox regression analyses confirmed the ability of TMEM25 to diagnose and determine prognosis in ccRCC. Its expression related closely with various immune cell types, immune checkpoints, immune inhibitors, and MHC molecules. Within ccRCC tissues, TMEM25 DNA methylation levels are observed to be elevated, and this upregulation is observed across various conditions. TMEM25 mutations also have an impact on the prognosis of ccRCC patients and the results of drug sensitivity analyses are useful for clinical decision-making. CONCLUSIONS TMEM25 in ccRCC could potentially function as a tumor suppressor gene, holding substantial promise as a novel biomarker for diagnosing, treating, and prognosticating ccRCC patients.
Collapse
Affiliation(s)
- Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhicheng Zhang
- Department of Surgery, Fuzhou First People’s Hospital, Fuzhou 344000, Jiangxi Province, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yechen Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ziwen Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
13
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhao S, Hu X, Zhou P, Li A, Chen L, Wang D, He J, Jiang Y. Molecular profiles of different PD-L1 expression in patients with esophageal squamous cell carcinoma. Cancer Biol Ther 2023; 24:2256927. [PMID: 38032149 PMCID: PMC10515684 DOI: 10.1080/15384047.2023.2256927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 inhibitors are approved treatments for patients with esophageal squamous cell carcinoma (ESCC). The present investigation aspired to explore the interrelation between molecular phenotype and PD-L1 expression in ESCC. METHODS PD-L1 testing and targeted next-generation sequencing (NGS) were performed on tumoral tissues from 139 ESCC patients. Tumor-infiltrating lymphocytes (TILs) were scrutinized using a tyramide signal amplification system combined with immunohistochemistry. RESULTS Among enrolled patients, 36.7% displayed high PD-L1 expression (combined positive score [CPS] ≥10). BRCA1 and NF1 gene mutations were significantly associated with high PD-L1 expression (p < .05) while TGFβ pathway alterations were linked to low PD-L1 expression (p = .02). High copy number instability (CNI) and copy number alterations (CNA) were correlated with low PD-L1 expression. Patients with CDKN2A deletion exhibited higher PD-L1 expression. Varying types of TILs were observed across different PD-L1 expression groups. The ratio of CD8+PD-L1+ T cells and CD8+PD-1+ T cells to CD8+ T cells remained comparable in both tumoral and stromal regions, but the ratio of CD68+PD-L1+ macrophages to CD68+ macrophages was higher than the ratio of CD68+PD-1+ macrophages to CD68+ macrophages. CPS was significantly correlated with PD-L1+ lymphocytes and CD68+ macrophages in the tumoral region. CD8+ T cell infiltration was positively correlated with PD-1+ cells in both tumoral and stromal regions. CONCLUSION In this study, we presented the prevalence rates of PD-L1 expression in Chinese ESCC patients. The association of genetic profiles with PD-L1 expression levels also provide the clue that genomic phenotype may interact with the immunologic phenotype in ESCC.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Peiwen Zhou
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Ang Li
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Liguo Chen
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaxue He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Li XF, Wang ZJ, Zhang HM, Yang MQ. Warthin-like papillary renal cell carcinoma: A case report. World J Clin Cases 2023; 11:7450-7456. [PMID: 37969440 PMCID: PMC10643085 DOI: 10.12998/wjcc.v11.i30.7450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Warthin-like papillary renal cell carcinoma (WPRCC) has been described as a rare pathological subtype of papillary renal cell carcinoma in the 2022 World Health Organization Classification of the Urinary and Male Reproductive System. Herein we report a case of WPRCC in the left kidney. CASE SUMMARY Physical examination of a previously healthy 47-year-old woman revealed a lump in her left kidney, 4.5 cm × 3.5 cm × 3.5 cm in size. Based on the clinical information, imaging data, histmorphological features, and immunohistochemistry results, the pathological diagnosis was WPRCC in left kidney. CONCLUSION Resection of the mass in the left kidney was performed and her postoperative course was uneventful.
Collapse
Affiliation(s)
- Xiu-Feng Li
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Weifang Medical University), Weifang 261041, Shandong Province, China
| | - Zheng-Jiang Wang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Weifang Medical University), Weifang 261041, Shandong Province, China
| | - Heng-Ming Zhang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Weifang Medical University), Weifang 261041, Shandong Province, China
| | - Mai-Qing Yang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Weifang Medical University), Weifang 261041, Shandong Province, China
| |
Collapse
|
16
|
Alchahin AM, Tsea I, Baryawno N. Recent Advances in Single-Cell RNA-Sequencing of Primary and Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:4734. [PMID: 37835428 PMCID: PMC10571653 DOI: 10.3390/cancers15194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past two decades, significant progress has been made in the treatment of clear cell renal cell carcinoma (ccRCC), with a shift towards adopting new treatment approaches ranging from monotherapy to triple-combination therapy. This progress has been spearheaded by fundamental technological advancements that have allowed a deeper understanding of the various biological components of this cancer. In particular, the rapid commercialization of transcriptomics technologies, such as single-cell RNA-sequencing (scRNA-seq) methodologies, has played a crucial role in accelerating this understanding. Through precise measurements facilitated by these technologies, the research community has successfully identified and characterized diverse tumor, immune, and stromal cell populations, uncovering their interactions and pathways involved in disease progression. In localized ccRCC, patients have shown impressive response rates to treatment. However, despite the emerging findings and new knowledge provided in the field, there are still patients that do not respond to treatment, especially in advanced disease stages. One of the key challenges lies in the limited study of ccRCC metastases compared to localized cases. This knowledge gap may contribute to the relatively low survival rates and response rates observed in patients with metastatic ccRCC. To bridge this gap, we here delve into recent research utilizing scRNA-seq technologies in both primary and metastatic ccRCC. The goal of this review is to shed light on the current state of knowledge in the field, present existing treatment options, and emphasize the crucial steps needed to improve survival rates, particularly in cases of metastatic ccRCC.
Collapse
Affiliation(s)
| | | | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 10000-19999 Stockholm, Sweden; (A.M.A.); (I.T.)
| |
Collapse
|
17
|
Ciccarese C, Strusi A, Arduini D, Russo P, Palermo G, Foschi N, Racioppi M, Tortora G, Iacovelli R. Post nephrectomy management of localized renal cell carcinoma. From risk stratification to therapeutic evidence in an evolving clinical scenario. Cancer Treat Rev 2023; 115:102528. [PMID: 36905896 DOI: 10.1016/j.ctrv.2023.102528] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Standard treatment for localized non-metastatic renal cell carcinoma (RCC) is radical or partial nephrectomy. However, after radical surgery, patients with stage II-III have a substantial risk of relapse (around 35%). To date a unique standardized classification for the risk of disease recurrence still lack. Moreover, in the last years great attention has been focused in developing systemic therapies with the aim of improving the disease-free survival (DFS) of high-risk patients, with negative results from adjuvant VEGFR-TKIs. Therefore, there is still a need for developing effective treatments for radically resected RCC patients who are at intermediate/high risk of relapse. Recently, interesting results came from immune-checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, with a significant benefit in terms of disease-free survival from adjuvant pembrolizumab. However, the conflicting results of diverse clinical trials investigating different ICI-based regimens in the adjuvant setting, together with the still immature data on the overall survival advantage of immunotherapy, requires careful considerations. Furthermore, several questions remain unanswered, primarily regarding the selection of patients who could benefit the most from immunotherapy. In this review, we have summarized the main clinical trials investigating adjuvant therapy in RCC, with a particular focus on immunotherapy. Moreover, we have analyzed the crucial issue of patients' stratification according to the risk of disease recurrence, and we have described the possible future prospective and novel agents under evaluation for perioperative and adjuvant therapies.
Collapse
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Strusi
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Daniela Arduini
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Pierluigi Russo
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Urology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Palermo
- Urology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nazario Foschi
- Urology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Marco Racioppi
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Urology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| |
Collapse
|
18
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
19
|
Yang L, Xiong J, Li S, Liu X, Deng W, Liu W, Fu B. Mitochondrial metabolic reprogramming-mediated immunogenic cell death reveals immune and prognostic features of clear cell renal cell carcinoma. Front Oncol 2023; 13:1146657. [PMID: 37213288 PMCID: PMC10196130 DOI: 10.3389/fonc.2023.1146657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Background Mitochondrial metabolic reprogramming (MMR)-mediated immunogenic cell death (ICD) is closely related to the tumor microenvironment (TME). Our purpose was to reveal the TME characteristics of clear cell renal cell carcinoma (ccRCC) by using them. Methods Target genes were obtained by intersecting ccRCC differentially expressed genes (DEGs, tumor VS normal) with MMR and ICD-related genes. For the risk model, univariate COX regression and K-M survival analysis were used to identify genes most associated with overall survival (OS). Differences in the TME, function, tumor mutational load (TMB), and microsatellite instability (MSI) between high and low-risk groups were subsequently compared. Using risk scores and clinical variables, a nomogram was constructed. Predictive performance was evaluated by calibration plots and receiver operating characteristics (ROC). Results We screened 140 DEGs, including 12 prognostic genes for the construction of risk models. We found that the immune score, immune cell infiltration abundance, and TMB and MSI scores were higher in the high-risk group. Thus, high-risk populations would benefit more from immunotherapy. We also identified the three genes (CENPA, TIMP1, and MYCN) as potential therapeutic targets, of which MYCN is a novel biomarker. Additionally, the nomogram performed well in both TCGA (1-year AUC=0.862) and E-MTAB-1980 cohorts (1-year AUC=0.909). Conclusions Our model and nomogram allow accurate prediction of patients' prognoses and immunotherapy responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Fu
- *Correspondence: Bin Fu, ; Weipeng Liu,
| |
Collapse
|
20
|
Banerjee S, Nahar U, Dahiya D, Mukherjee S, Dey P, Gupta R, Radotra B, Sachdeva N, Sood A, Bhadada SK, Bhansali A. Role of cytotoxic T cells and PD-1 immune checkpoint pathway in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:931647. [PMID: 36518249 PMCID: PMC9742369 DOI: 10.3389/fendo.2022.931647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lymphocytic thyroiditis (LT) is frequently seen in the tumor microenvironment (TME) of papillary thyroid carcinomas (PTCs). However, the characteristic of these tumor-infiltrating lymphocytes (TILs) is not well understood. Objective We aim to define the TME of PTC cases by characterizing the TILs. Design This is a cross-sectional observational study. Patients We enrolled 29 PTC (23 having concurrent LT), 14 LT, and 13 hyperplastic nodules with LT (HN) patients from January 2016 to December 2020. Measurements Immunohistochemical (IHC) expression of CD8, FoxP3, PD-1, and PD-L1 was studied in PTC with LT and compared with HN. PD-1 and PD-L1 expression was correlated at the mRNA level by quantitative real-time PCR. Immunophenotyping of TILs was done in FNAC samples of PTC and LT by flow cytometry. Results IHC revealed the presence of CD8+ cytotoxic T lymphocytes (CTLs) and FoxP3+ T regulatory cells (Tregs) in 83% and 52% of PTC with LT cases, respectively. Flow cytometric analysis of the PTC samples revealed a significant abundance of CTL compared with Treg and a higher CTL with lower Treg counts compared with LT. On IHC, PD-1 positivity was noted in 56.5% of PTC with LT cases, while intermediate PD-L1 positivity was found in 70% of the cases. There was a significant upregulation of PD-1 mRNA in PTC with LT. A significant correlation was noted with PD-L1 expression with lymph node metastasis and presence of Treg cells. Conclusions Increased expression of PD-1 and PD-L1 in the TME of PTC may provide a potential molecular mechanism for tumor survival despite the predominance of CTLs, possibly through their inactivation or exhaustion.
Collapse
Affiliation(s)
- Sohini Banerjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Soham Mukherjee
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rijuneeta Gupta
- Department of Otolaryngology (ENT), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2022; 86:1033-1057. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Immune checkpoint proteins including programmed cell death protein 1 (PD-1), its ligand PD-L1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are involved in proliferation, angiogenesis, metastasis, chemoresistance via immune escape and immune tolerance by disturbing cytotoxic T cell activation. Though many clinical trials have been completed in several cancers by using immune checkpoint inhibitors alone or in combination with other agents to date, recently multi-target therapy is considered more attractive than monotherapy, since immune checkpoint proteins work with other components such as surrounding blood vessels, dendritic cells, fibroblasts, macrophages, platelets and extracellular matrix within tumor microenvironment. Thus, in the current review, we look back on research history of immune checkpoint proteins and discuss their associations with platelets or tumor cell induced platelet aggregation (TCIPA) and FOXP3+ regulatory T cells (Tregs) related molecules involved in immune evasion and tumor progression, clinical implications of completed trial results and signaling networks by phytochemicals for combination therapy with immune checkpoint inhibitors and suggest future research perspectives.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Donghwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
22
|
Construction and Characterization of n6-Methyladenosine-Related lncRNA Prognostic Signature and Immune Cell Infiltration in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7495183. [PMID: 36213821 PMCID: PMC9536954 DOI: 10.1155/2022/7495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We extracted standard mRNA-sequencing and clinical data from the TCGA database. The prognostic risk model was obtained by Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases. Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for each patient and we divided all KIRC samples into high-risk and low-risk groups. Then, high- and low-risk subtypes were established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the entire sampled data set. The reliability of the prognostic model was confirmed by receiver operating characteristic curve analysis. Results. We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
The signature showed a better predictive ability than other clinical indicators, including tumor node metastasis classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages, mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related lncRNA prognostic signature.
Collapse
|
23
|
Talaat IM, Elemam NM, Zaher S, Saber-Ayad M. Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment. Front Med (Lausanne) 2022; 9:955599. [PMID: 36072957 PMCID: PMC9441912 DOI: 10.3389/fmed.2022.955599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide, with a high mortality rate due to metastasis. The tumor microenvironment (TME) contains multiple interactions between the tumor and the host, thus determining CRC initiation and progression. Various immune cells exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs). The immunotherapy approach provides novel opportunities to treat solid tumors, especially toward immune checkpoints. Despite the advances in the immunotherapy of CRC, there are still obstacles to successful treatment. In this review, we highlighted the role of these immune cells in CRC, with a particular emphasis on immune checkpoint molecules involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Iman M. Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha M. Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shroque Zaher
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Concomitant Use of Statins, Metformin, or Proton Pump Inhibitors in Patients with Advanced Renal Cell Carcinoma Treated with First-Line Combination Therapies. Target Oncol 2022; 17:571-581. [PMID: 35947324 DOI: 10.1007/s11523-022-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Drug-drug interactions are a major concern in oncology and may potentially affect the outcome of patients with cancer. OBJECTIVE In this study, we aimed to determine whether the concomitant use of statins, metformin, or proton pump inhibitors affects survival in patients with metastatic renal cell carcinoma treated with first-line combination therapies. METHODS Medical records of patients with documented metastatic renal cell carcinoma between January 2016 and November 2021 were reviewed at 17 participating centers. This research was conducted in ten institutions, including both referral centers and local hospitals. Patients were assessed for overall survival, progression-free survival, and overall clinical benefit. Univariate and multivariate analyses were conducted to explore the association of variables of interest with overall survival and progression-free survival. RESULTS A total of 304 patients receiving dual immunotherapy (51%) or immunotherapy/vascular endothelial growth factor-tyrosine kinase inhibitor (49%) combinations were eligible for inclusion in this retrospective study. Statin use was a significant prognostic factor for longer overall survival in a univariate analysis (hazard ratio 0.48, 95% confidence interval 0.26-0.87; p = 0.016) and a multivariate analysis (hazard ratio 0.48, 95% confidence interval 0.31-0.74; p < 0.001) and was significantly associated with an overall clinical benefit (83% in statin users vs 71% in non-users; p = 0.045). Otherwise, the use of metformin or proton pump inhibitors did not affect the outcome of these patients. CONCLUSIONS Our study suggests a prognostic impact of statin use in patients receiving first-line immuno-oncology combinations. The mechanism of this interaction warrants further elucidation.
Collapse
|
25
|
Zeng W, Xiong G, Hua L, Hu Y, Guo X, Peng X. APOA1 mRNA and protein in kidney renal clear cell carcinoma correlate with the disease outcome. Sci Rep 2022; 12:12406. [PMID: 35858961 PMCID: PMC9300670 DOI: 10.1038/s41598-022-16434-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Renal cancer is one of the most common malignant tumors with high mortality, and kidney renal clear cell carcinoma (KIRC) is the most common type of renal cancer. We attempted to evaluate the clinical and prognostic significance of Apolipoprotein A1 (APOA1) mRNA and protein in KIRC patients. Clinical data along with RNA-sequencing data were downloaded from UCSC Xena. The Human Protein Atlas database was searched to reveal APOA1 protein expression profiles in KIRC and normal renal tissues. The TIMER database was applied to determine the correlations of APOA1 with immune cells and PD-1 and PD-L1 in KIRC. Ninety-one cases of KIRC patients and 93 healthy controls from our hospital were enrolled for clinical validation. Levels of APOA1 mRNA in KIRC tissues (N = 535) are not only lower than the levels in normal renal tissues (N = 117), but also in paired normal renal tissues (N = 72). High expression of APOA1 mRNA at the time of surgery was correlated with worse overall survival (OS) (HR 1.66; p = 0.037) and disease-free survival (DFS) (HR 1.65; p = 0.047), and APOA1 DNA methylation was linked to worse OS (HR 2.1; p = 0.001) rather than DFS (HR 1.12; p = 0.624) in KIRC patients. Concentrations of preoperative serum APOA1 protein were markedly decreased in KIRC patients compared to healthy controls (p < 0.01), and low levels of APOA1 protein predicted less favorable OS than those with high levels (HR = 2.84, p = 0.0407). APOA1 negatively correlated with various immune cell infiltrates and PD-L1 expression (r = − 0.283, p = 2.74e−11) according to the TIMER database. Low levels of APOA1 mRNA at the time of surgery predict favorable survival in KIRC patients. Our results provide insights to identify a novel prognostic index with great clinical utility.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Neurology, The Second Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei Province, People's Republic of China
| | - Guoguang Xiong
- Department of Urology, The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, Hubei Province, People's Republic of China
| | - Li Hua
- Department of General Medicine, The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, Hubei Province, People's Republic of China
| | - Yugang Hu
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xufeng Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, 122 Xianzheng Road, Wuhan, 430050, Hubei Province, People's Republic of China.
| |
Collapse
|
26
|
Characterization and function of biomarkers in sunitinib-resistant renal carcinoma cells. Gene 2022; 832:146514. [PMID: 35550407 DOI: 10.1016/j.gene.2022.146514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Sunitinib is a first-line drug in the treatment of metastatic renal cell carcinoma, but patients will inevitably develop drug resistance after 6-15 months of systematic treatment, which seriously affects the prognosis in KIRC. METHODS During the study, the Gene Expression Omnibus (GEO) database was used to perform a systematic bioinformatics analysis,so that we could determine the genes (DEGs) which are differentially expressed between sunitinib-sensitive and sunitinib-resistant RCC (SRRC) cells. RESULTS A total of 31 DEGs were identified. Gene ontology (GO) was used to analyze the function of DEGS. These DEGs were found mainly enriched in organic aniontransmembrane transporter. The Cytohubba plug-in, STRING database and Cytoscape software were involved to construct a protein-protein interaction (PPI) network, and the pivot genes were identified by single-gene and multi-gene Cox regression analysis. Finally, DDX58 and MX2 were identified as prognostic genes. Survival analysis was performed by using prognostic nomogram, prognostic histogram and GEPIA database to verify the relationship between DDX58 and MX2 expression and survival. The relationship between the two pivot genes and the prognosis of patients was further verified by using the KM survival analyses and Time Dependency ROC curve analyses from TCGA database. Immunohistochemical analyses confirmed that, in tumor tissues and normal tissues, DDX58 and MX2 were differentially expressed. The expression of these two genes have relationship with the immune checkpoint. CONCLUSIONS This study provides insights into the molecular mechanisms of SRRC, as well as the selection of therapeutic and prognostic biomarkers for SRRC.
Collapse
|
27
|
Santoni M, Monteiro FSM, Massari F, Abahssain H, Aurilio G, Molina-Cerrillo J, Myint ZW, Zabalza IO, Battelli N, Grande E. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. Crit Rev Oncol Hematol 2022; 176:103731. [PMID: 35718065 DOI: 10.1016/j.critrevonc.2022.103731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Statins are commonly prescribed to reduce plasma cholesterol levels and risk of cardiovascular events and mortality. Statin exposure may have cancer-preventive properties in some solid tumors, including Renal Cell Carcinoma (RCC). Emerging evidences show that statins can inhibit RCC cell growth by inducing cell cycle arrest and apoptosis in a dose- and time-dependent manner. In addition, statins inhibit the phosphorylation of AKT, mammalian target of rapamycin (mTOR), and ERK leading to reduced motility of RCC cells. Interestingly, the potential impact of concomitant statin intake has been recently evaluated in RCC patients treated by targeted therapy or immunotherapy. In this review, we illustrate the most recent data on the preclinical activity of statins in Renal Cell Carcinoma models and discuss the impact of their use on the prevention and survival of patients affected by this tumor.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100 Macerata, Italy.
| | - Fernando Sabino M Monteiro
- Latin American Cooperative Oncology Group - LACOG, Brazil; Oncology and Hematology Department, Hospital Santa Lucia, SHLS 716 Cj. C, Brasília, DF 70390-700, Brazil
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy
| | - Halima Abahssain
- Medicine and Pharmacy Faculty, National Institute of Oncology, Medical Oncology Unit, Mohamed V University, Rabat, Morocco
| | - Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Zin W Myint
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0293, USA; Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | | | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100 Macerata, Italy
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, Madrid, Spain
| |
Collapse
|
28
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
29
|
Zhu Z, Zhang Y, Wang H, Jiang T, Zhang M, Zhang Y, Su B, Tian Y. Renal Cell Carcinoma Associated With HIV/AIDS: A Review of the Epidemiology, Risk Factors, Diagnosis, and Treatment. Front Oncol 2022; 12:872438. [PMID: 35433425 PMCID: PMC9010566 DOI: 10.3389/fonc.2022.872438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC), one of the most common genitourinary tumors, is induced by many factors, primarily smoking, obesity, and hypertension. As a non-acquired immunodeficiency syndrome (AIDS)-defining cancer, human immunodeficiency virus (HIV) may also play a critical role in the incidence and progression of RCC. It is evident that individuals who are infected with HIV are more likely than the general population to develop RCC. The age of RCC diagnosis among HIV-positive patients is younger than among HIV-negative individuals. However, many other characteristics remain unknown. With the increase in RCC incidence among HIV-infected patients, more research is being conducted to discover the relationship between RCC and HIV, especially with regard to HIV-induced immunodeficiency, diagnosis, and treatment. Unexpectedly, the majority of the literature suggests that there is no relationship between RCC and HIV-induced immunodeficiency. Nonetheless, differences in pathology, symptoms, or treatment in HIV-positive patients diagnosed with RCC are a focus. In this review, we summarize the association of RCC with HIV in terms of epidemiology, risk factors, diagnosis, and treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yihang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Taiyi Jiang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mengmeng Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| |
Collapse
|
30
|
Iacovelli R, Ciccarese C, Procopio G, Astore S, Antonella Cannella M, Grazia Maratta M, Rizzo M, Verzoni E, Porta C, Tortora G. Current evidence for second-line treatment in metastatic renal cell carcinoma after progression to immune-based combinations. Cancer Treat Rev 2022; 105:102379. [DOI: 10.1016/j.ctrv.2022.102379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022]
|
31
|
The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021; 10:biomedicines10010090. [PMID: 35052770 PMCID: PMC8773056 DOI: 10.3390/biomedicines10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is an increasingly common malignancy that can progress to metastatic renal cell carcinoma (mRCC) in approximately one-third of RCC patients. The 5-year survival rate for mRCC is abysmally low, and, at the present time, there are sparingly few if any effective treatments. Current surgical and pharmacological treatments can have a long-lasting impact on renal function, as well. Thus, there is a compelling unmet need to discover novel biomarkers and surveillance methods to improve patient outcomes with more targeted therapies earlier in the course of the disease. Circulating biomarkers, such as circulating tumor DNA, noncoding RNA, proteins, extracellular vesicles, or cancer cells themselves potentially represent a minimally invasive tool to fill this gap and accelerate both diagnosis and treatment. Here, we discuss the clinical relevance of different circulating biomarkers in metastatic renal cell carcinoma by clarifying their potential role as novel biomarkers of response or resistance to treatments but also by guiding clinicians in novel therapeutic approaches.
Collapse
|
32
|
TEAD4 overexpression suppresses thyroid cancer progression and metastasis in vitro by modulating Wnt signaling. J Biosci 2021. [DOI: 10.1007/s12038-021-00238-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Immunotherapy of cancer tumors with inhibition of PD-1 membrane protein and its ligands interaction. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of the PD-1 receptor by Tasuku Honjo and CTLA-4 by James Ellison marked the beginning of the study of new regulatory pathways activating the immune response. The term “immune checkpoints” was introduced to denote the system of inhibitory mechanisms that include these proteins. The review presents the literature data on the molecular characteristics of the membrane protein PD-1 (programmed cell death 1 receptor) and its role in the regulation of immunity. We consider the PD-1 pathways used of by tumor cells to escape the immune response. The discovery of immune checkpoints made it possible to develop a new type of targeting therapy for cancer. The review presents the results of clinical trials of drugs that block the interaction between the PD-1 and its ligands in various types of cancer. These drugs include nivolumab, pembrolizumab, and avelumab. Studies of these drugs efficacy in patients with various types of cancer localization were conducted within the CheckMate, KEYNOTE and JAVELIN Solid Tumor programs, with some research being in progress. We analyze the results of studying the clinical efficacy of the drugs in patients with melanoma, lung cancer, renal cell cancer, colorectal cancer, classical Hodgkin’s lymphoma, Merkel carcinoma and stomach cancer. Both positive and inconclusive results in the treatment of patients are noted. These data made it possible to identify promising directions for the use of the drugs in certain localizations of the malignant process, as well as to determine the dose and time of their use to obtain an objective positive response to treatment.
Collapse
|
34
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Roviello G, Catalano M, Santi R, Palmieri VE, Vannini G, Galli IC, Buttitta E, Villari D, Rossi V, Nesi G. Immune Checkpoint Inhibitors in Urothelial Bladder Cancer: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4411. [PMID: 34503220 PMCID: PMC8431680 DOI: 10.3390/cancers13174411] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the genitourinary tract, with high morbidity and mortality rates. Until recently, the treatment of locally advanced or metastatic urothelial BC was based on the use of chemotherapy alone. Since 2016, five immune checkpoint inhibitors (ICIs) have been approved by the Food and Drug Administration (FDA) in different settings, i.e., first-line, maintenance and second-line treatment, while several trials are still ongoing in the perioperative context. Lately, pembrolizumab, a programmed death-1 (PD-1) inhibitor, has been approved for Bacillus Calmette-Guérin (BCG)-unresponsive high-risk non-muscle invasive bladder cancer (NMIBC), using immunotherapy at an early stage of the disease. This review investigates the current state and future perspectives of immunotherapy in BC, focusing on the rationale and results of combining immunotherapy with other therapeutic strategies.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| | - Martina Catalano
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| | - Raffaella Santi
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy; (R.S.); (I.C.G.)
| | - Valeria Emma Palmieri
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| | - Gianmarco Vannini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy; (R.S.); (I.C.G.)
| | - Eleonora Buttitta
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Virginia Rossi
- Clinical Oncology Unit, Careggi Teaching Hospital, 50139 Florence, Italy;
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (G.R.); (M.C.); (V.E.P.); (G.V.); (E.B.)
| |
Collapse
|
36
|
Bhindi B, Bearrick EN, Cheville JC, Lohse CM, Mason RJ, Shah P, Harrington S, Zhang H, Dong H, Boorjian SA, Thompson RH, Leibovich BC. Bim Expression in Peritumoral Lymphocytes is Associated with Survival in Patients with Metastatic Clear Cell Renal Cell Carcinoma. KIDNEY CANCER 2021. [DOI: 10.3233/kca-210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Bim (BCL-2-interacting mediator of cell death) is a downstream pro-apoptotic signaling molecule activated by the PD-1 pathway. OBJECTIVE: We sought to determine if Bim expression in peritumoral T-lymphocytes (PTLs) is associated with survival in patients with metastatic clear cell renal cell carcinoma (ccRCC). METHODS: Immunohistochemistry staining for Bim was performed on paraffin-embedded tumor tissue blocks from patients with metastatic ccRCC who underwent nephrectomy between 1990-2004. Associations of Bim expression with cancer-specific survival (CSS) and overall survival (OS) from date of metastasis were evaluated using multivariable Cox regression models, adjusting for age, sex, and metastases-score. RESULTS: 525 patients with metastatic ccRCC, of whom 169 (32%) had metastases at time of nephrectomy were studied. After multivariable adjustment, high Bim expression remained associated with worse CSS (HR = 1.31; 95% CI 1.07–1.59; p = 0.008) and OS (HR = 1.28; 95% CI 1.06–1.55; p = 0.01). The interaction between Bim and PD-L1 was not statistically significant for CSS (p = 0.68) or OS (p = 0.57), suggesting that the associations between Bim and survival outcomes were not significantly different based on tumor PD-L1 expression. CONCLUSION: High Bim expression in PTLs at nephrectomy is prognostic of worse CSS and OS in patients with metastatic ccRCC, irrespective of tumor PD-L1 expression. The role of earlier PD-1/PD-L1-directed therapy warrants evaluation in these patients.
Collapse
Affiliation(s)
- Bimal Bhindi
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Southern Alberta Institute of Urology, Calgary, AB, Canada
| | | | | | | | - Ross J. Mason
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Dalhousie University, Halifax, NS, Canada
| | - Paras Shah
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | - Henan Zhang
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
37
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|
38
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
39
|
Li L, Miao Q, Meng F, Li B, Xue T, Fang T, Zhang Z, Zhang J, Ye X, Kang Y, Zhang X, Chen Q, Liang X, Chen H, Zhang X. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Am J Cancer Res 2021; 11:6033-6043. [PMID: 33897897 PMCID: PMC8058713 DOI: 10.7150/thno.48868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint blockade therapies, especially those targeting the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) have achieved impressive clinical responses in multiple types of cancers. To optimize the therapeutic effect of the checkpoint antibodies, many strategies including targeting delivery, controlled release, and cellular synthesis have been developed. However, within these strategies, antibodies were attached to drug carriers by chemical bonding, which may affect the steric configuration and function of the antibodies. Herein, we prepared cluster of differentiation 64 (CD64), a natural catcher of the fragment crystalline (Fc) of monomeric immunoglobulin G (IgG), and over-expressed it on the cell membrane nanovesicles (NVs) as PD-L1 antibody delivery vehicle (CD64-NVs-aPD-L1), which was employed to disrupt the PD-1/PD-L1 immunosuppressive signal axis for boosting T cell dependent tumor elimination. Meanwhile, chemical immunomodulatory drug cyclophosphamide (CP) was also encapsulated in the vesicle (CD64-NVs-aPD-L1-CP), to simultaneously restrain the regulatory T cells (Tregs) and invigorate Ki67+CD8+ T cells, then further enhance their anti-tumor ability. Methods: The cell membrane NVs overexpressing CD64 were incubated with PD-L1 antibody and chemotherapeutic agent CP to prepare CD64-NVs-aPD-L1-CP. Results: The CD64-NVs-aPD-L1-CP could simultaneously interrupt the immunosuppressive effect of PD-L1 and decrease the inhibition of Tregs, leading to tumor growth suppression and survival time extension. Conclusion: CD64-NVs are charismatic carriers to achieve both checkpoint blockade and immunomodulatory drugs for combined cancer immunotherapy.
Collapse
|
40
|
Liu K, Gao R, Wu H, Wang Z, Han G. Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma. J Cell Mol Med 2021; 25:4260-4274. [PMID: 33759378 PMCID: PMC8093989 DOI: 10.1111/jcmm.16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the leading causes of cancer-related death worldwide. Tumour metastasis and heterogeneity lead to poor survival outcomes and drug resistance in patients with metastatic RCC (mRCC). In this study, we aimed to assess intratumoural heterogeneity (ITH) in mRCC cells by performing a combined analysis of bulk data and single-cell RNA-sequencing data, and develop novel biomarkers for prognosis prediction on the basis of the potential molecular mechanisms underlying tumorigenesis. Eligible single-cell cohorts related to mRCC were acquired using the Gene Expression Omnibus (GEO) dataset to identify potential mRCC subpopulations. We then performed gene set variation analysis to understand the differential function in primary RCC and mRCC samples. Subsequently, we applied weighted correlation network analysis to identify coexpressing gene modules that were related to the external trait of metastasis. Protein-protein interactions were used to screen hub subpopulation-difference (sub-dif) markers (ACTG1, IL6, CASP3, ACTB and RAP1B) that might be involved in the regulation of RCC metastasis and progression. Cox regression analysis revealed that ACTG1 was a protective factor (HR < 1), whereas the other four genes (IL6, CASP3, ACTB and RAP1B) were risk factors (HR > 1). Kaplan-Meier survival analysis suggested the potential prognostic value of these sub-dif markers. The expression of sub-dif markers in mRCC was further evaluated in clinical samples by immunohistochemistry (IHC). Additionally, the genetic features of sub-dif marker expression patterns, such as genetic variation profiles, correlations with tumour-infiltrating lymphocytes (TILs), and targeted signalling pathway activities, were assessed in bulk RNA-seq datasets. In conclusion, we established novel subpopulation markers as key prognostic factors affecting EMT-related signalling pathway activation in mRCC, which could facilitate the implementation of a treatment for mRCC patients.
Collapse
Affiliation(s)
- Kun Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Gastrointestinal Oncology, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies. RECENT FINDINGS Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly. We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.
Collapse
Affiliation(s)
- Juhi Jain
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE , 400, Atlanta, GA, 30322, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE, 434B, Atlanta, GA, 30322, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Atlanta, GA, USA. .,Health Sciences Research Building, 1760 Haygood Drive NE, E-370, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Jacob A, Shook J, Hutson T. The implementation of lenvatinib/everolimus or lenvatinib/pembrolizumab combinations in the treatment of metastatic renal cell carcinoma. Expert Rev Anticancer Ther 2021; 21:365-372. [PMID: 33393393 DOI: 10.1080/14737140.2021.1868994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: There are 400,000 new cases of Renal Cell Carcinoma (RCC) and 175,000 deaths worldwide every year. Currently available frontline therapies to treat RCC have less toxicity than previously employed therapeutic agents, but drug resistance is still a clinically significant problem. Drug resistance occurs through angiogenic escape by the activation of pathways that are independent of the VEGF targets of most first-line therapies. The lenvatinib/everolimus and lenvatinib/pembrolizumab are part of a new generation of combinations that can combat this method of resistance to extend both progression-free survival and overall survival in patients with metastatic RCC.Areas covered: This article discusses the evolution of current data on the efficacy and safety of these two combinations and future directions for their implementation in the treatment of advanced renal cell carcinoma.Expert opinion: Future research will focus on these combinations in contrast with other currently approved regimens. Once specific biomarkers that predict response to treatment are identified, the future of treatment of mRCC will involve specifically tailored therapies for a patient's genotype. Therapies unique only to the patient undergoing treatment will increase both efficacy and safety of new treatments, and that is the truly exciting future that awaits this field.
Collapse
Affiliation(s)
- Allen Jacob
- Department of Internal Medicine, Baylor Scott and White Medical Center-Temple, Temple, TX, USA
| | - Jaret Shook
- Doctor of Pharmacy Student, Ohio Northern University Raabe College of Pharmacy, Ada, OH, USA
| | - Thomas Hutson
- Division of Genitourinary Oncology, Charles A. Sammons Cancer Center, Baylor University Medical Center, Texas Oncology, Dallas, TX, USA
| |
Collapse
|
43
|
Zhao LP, Zheng RR, Huang JQ, Chen XY, Deng FA, Liu YB, Huang CY, Yu XY, Cheng H, Li SY. Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy. ACS NANO 2020; 14:17100-17113. [PMID: 33236625 DOI: 10.1021/acsnano.0c06765] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity. Intravenously administrated iPSs prefer to passively accumulate on tumor tissues for a robust photodynamic therapy (PDT) with the induction of immunogenetic cell death (ICD) cascade to activate cytotoxic T lymphocytes (CTLs) and initiate antitumor immune response. Meanwhile, the concomitant delivery of NLG919 inhibits the activation of indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse the immunosuppressive tumor microenvironment. Ultimately, the photodynamic sensitized immunotherapy with iPSs efficiently inhibit the primary and distant tumor growth with a low system toxicity, which would shed light on the development of self-delivery nanomedicine for clinical transformation in tumor precision therapy.
Collapse
Affiliation(s)
- Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jia-Qi Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xia-Yun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Fu-An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yi-Bin Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Chu-Yu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
44
|
Mori K, Abufaraj M, Mostafaei H, Quhal F, Fajkovic H, Remzi M, Karakiewicz PI, Egawa S, Schmidinger M, Shariat SF, Gust KM. The Predictive Value of Programmed Death Ligand 1 in Patients with Metastatic Renal Cell Carcinoma Treated with Immune-checkpoint Inhibitors: A Systematic Review and Meta-analysis. Eur Urol 2020; 79:783-792. [PMID: 33172722 DOI: 10.1016/j.eururo.2020.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Immune-checkpoint inhibitors (ICIs) are a mainstay treatment of metastatic renal cell carcinoma (mRCC). As not all patients benefit from ICIs, a biomarker-driven clinical decision-making strategy is desirable. OBJECTIVE To assess the predictive value of programmed death ligand 1 (PD-L1) in mRCC patients treated with ICIs. EVIDENCE ACQUISITION Multiple databases were searched for articles published up to April 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. Studies comparing objective response rate (ORR), complete response rate (CRR), progressive disease rate (PDR), or progression-free survival (PFS) based on tumor PD-L1 status in mRCC patients were eligible. EVIDENCE SYNTHESIS Six studies matched our eligibility criteria. Treatment with ICIs was associated with significantly higher ORRs and CRRs, and lower PDRs in patients with PD-L1-positive tumors than in those with PD-L1-negative status (odds ratio [OR] 1.84, 95% confidence interval [CI] 1.48-2.28; OR 3.11, 95% CI 2.04-4.75; and OR 0.43, 95% CI 0.31-0.60, respectively). ICI treatment was associated with significantly better PFS in PD-L1-positive patients than in sunitinib-treated patients (hazard ratio 0.65, 95% CI 0.57-0.74), whereas this was not found in patients with PD-L1-negative tumors. Compared with sunitinib, ICI combination therapy improved ORRs and PFS significantly in PD-L1-positive patients of all examined ICIs. Nivolumab plus ipilimumab had the highest likelihood of providing the highest ORR and longest PFS in PD-L1-positive patients. CONCLUSIONS PD-L1 positivity of the tumor is associated with improved ORRs and prolonged PFS in mRCC patients receiving ICI treatment and thus helps identify mRCC patients most likely to benefit from ICI treatment. PATIENT SUMMARY The use of an immune-checkpoint inhibitor for the treatment of metastatic renal cell carcinoma (mRCC) improved oncological outcomes, and the status of programmed death ligand 1 could contribute to guiding patients and clinicians when determining personalized treatment strategies for mRCC.
Collapse
Affiliation(s)
- Keiichiro Mori
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mohammad Abufaraj
- Department of Urology, Medical University of Vienna, Vienna, Austria; Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
| | - Hadi Mostafaei
- Department of Urology, Medical University of Vienna, Vienna, Austria; Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahad Quhal
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Harun Fajkovic
- Department of Urology, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Mesut Remzi
- Department of Urology, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, Canada
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Manuela Schmidinger
- Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria; Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Department of Urology, Weill Cornell Medical College, New York, NY, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; European Association of Urology Research Foundation, Arnhem, The Netherlands.
| | - Kilian M Gust
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
45
|
Lombardo SD, Bramanti A, Ciurleo R, Basile MS, Pennisi M, Bella R, Mangano K, Bramanti P, Nicoletti F, Fagone P. Profiling of inhibitory immune checkpoints in glioblastoma: Potential pathogenetic players. Oncol Lett 2020; 20:332. [PMID: 33123243 PMCID: PMC7583708 DOI: 10.3892/ol.2020.12195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) represents the most frequent glial tumor, with almost 3 new cases per 100,000 people per year. Despite treatment, the prognosis for GBM patients remains extremely poor, with a median survival of 14.6 months, and a 5-year survival less than 5%. It is generally believed that GBM creates a highly immunosuppressive microenvironment, sustained by the expression of immune-regulatory factors, including inhibitory immune checkpoints, on both infiltrating cells and tumor cells. However, the trials assessing the efficacy of current immune checkpoint inhibitors in GBM are still disappointing. In the present study, the expression levels of several inhibitory immune checkpoints in GBM (CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48) were characterized in order to evaluate their potential as prognostic and eventually, therapeutic targets. Among the investigated immune checkpoints, TNFRSF14 and NECTIN2 were identified as the most promising targets in GBM. In particular, a higher TNFRSF14 expression was associated with worse overall survival and disease-free survival, and with a lower Th1 response.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | | | - Rosella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, I-98124 Messina, Italy
| | | | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Rita Bella
- Department of Medical Sciences, Surgery and Advanced Technologies, University of Catania, I-95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
46
|
Liu L, Yang M, Xu Q, Zhou M, Cheng Y, Xu H, Qin Y, Liu B. Killing efficiency affected by mutually modulated PD-1 and PD-L1 expression via NKT-hepatoma cell interactions. Immunotherapy 2020; 13:113-123. [PMID: 33076728 DOI: 10.2217/imt-2020-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the expression of programmed death-1 (PD-1) or programmed death ligand 1 (PD-L1), natural killer T (NKT) and hepatoma cells in coculture system, and the influence of abolishing PD-1 on antitumor efficiency. Materials & methods: CRISPR/Cas9 technology, flow cytometry, ELISA, CCK-8 assay and mouse models were performed to investigate the interactions between PD-1/PD-L1 expression on NKT and hepatoma cells, respectively. Results: The NKT and hepatoma cells mutually affected the expression of PD-1/PD-L1. The killing effect was positively correlated with NKT-mediated PD-L1 expression on hepatoma cells. Conclusion: Hepatoma cells in different genetic background responded differently to NKT-induced PD-L1 stimulation, and those cells with lower PD-L1 expression fail to PD-1 blocking intervention. Additionally, the killing effect was more time-efficient with PD-1 knockout than with monoclonal antibody blockade.
Collapse
Affiliation(s)
- Liwei Liu
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Mingya Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei City, Anhui Province, 230000, China
| | - Qia Xu
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei City, Anhui Province 230001, P.R. China
| | - Yan Cheng
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| | - Heming Xu
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| | - Yide Qin
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei City, Anhui Province, 230032, P.R. China
| | - Bo Liu
- Infectious Disease Department of The 901th Hospital of Joint Logistics Support Force of PLA, No.424 of Changjiang West Road, Hefei City, Anhui Province, 230031, China
| |
Collapse
|
47
|
Calabrese LH, Caporali R, Blank CU, Kirk AD. Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. J Autoimmun 2020; 115:102546. [PMID: 32980229 DOI: 10.1016/j.jaut.2020.102546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The T-cell response is regulated by the balance between costimulatory and coinhibitory signals. Immune checkpoints are essential for efficient T-cell activation, but also for maintaining self-tolerance and protecting tissues from damage caused by the immune system, and for providing protective immunity. Modulating immune checkpoints can serve diametric goals, such that blocking a coinhibitory molecule can unleash anti-cancer immunity whereas stimulating the same molecule can reduce an over-reaction in autoimmune disease. The purpose of this review is to examine the regulation of T-cell costimulation and coinhibition, which is central to the processes underpinning autoimmunity, transplant rejection and immune evasion in cancer. We will focus on the immunomodulation agents that regulate these unwanted over- and under-reactions. The use of such agents has led to control of symptoms and slowing of progression in patients with rheumatoid arthritis, reduced rejection rates in transplant patients, and prolonged survival in patients with cancer. The management of immune checkpoint inhibitor treatment in certain challenging patient populations, including patients with pre-existing autoimmune conditions or transplant patients who develop cancer, as well as the management of immune-related adverse events in patients receiving antitumor therapy, is examined. Finally, the future of immune checkpoint inhibitors, including examples of emerging targets that are currently in development, as well as recent insights gained using new molecular techniques, is discussed. T-cell costimulation and coinhibition play vital roles in these diverse therapeutic areas. Targeting immune checkpoints continues to be a powerful avenue for the development of agents suitable for treating autoimmune diseases and cancers and for improving transplant outcomes. Enhanced collaboration between therapy area specialists to share learnings across disciplines will improve our understanding of the opposing effects of treatments for autoimmune disease/transplant rejection versus cancer on immune checkpoints, which has the potential to lead to improved patient outcomes.
Collapse
Affiliation(s)
| | - Roberto Caporali
- University of Milan, Department of Clinical Sciences and Community Health and Rheumatology Division, ASST Pini-CTO Hospital, Milan, Italy
| | | | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
48
|
Berardi R, Goteri G, Brunelli A, Pagliaretta S, Paolucci V, Caramanti M, Rinaldi S, Refai M, Pompili C, Morgese F, Torniai M, Marcantognini G, Ricci G, Mazzanti P, Onofri A, Bianchi F, Sabbatini A, Cascinu S. Prognostic relevance of programmed cell death protein 1/programmed death-ligand 1 pathway in thymic malignancies with combined immunohistochemical and biomolecular approach. Expert Opin Ther Targets 2020; 24:937-943. [PMID: 32662701 DOI: 10.1080/14728222.2020.1790529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of the study was to investigate Programmed cell Death protein 1 (PD-1) and Programmed Death-Ligand 1 (PD-L1) and their mRNA expression in thymic epithelial tumors (TETs). RESEARCH DESIGN AND METHODS We analyzed 68 samples of formalin-fixed paraffin-embedded tissue (63 thymomas and 5 thymic carcinomas). PD-1 and PD-L1 protein expression were evaluated by immunohistochemistry, and mRNA expression was evaluated by real-time PCR. RESULTS M/F ratio was 33/35, and median age was 60.5 years. Twenty patients had Myasthenia Gravis (MG). In the subgroup with large tumors (>5 cm), PD-L1 mRNA overexpression was significantly associated with worse prognosis vs. patients with no mRNA overexpression (p = 0.0083) and simultaneous PD-L1 immunostaining (>1%); PD-L1 mRNA overexpression was significantly associated with worse prognosis, respect to patient with PD-L1 negative immunostaining, and no PD-L1 mRNA overexpression (p = 0.0178). The elderly patients (>60 years) with large tumors showed worse prognosis (p = 0.0395). PD-L1 immunostaining (>50%) resulted to be significantly associated with MG. CONCLUSIONS Our data suggest the potential involvement of the PD-1 and PD-L1 pathway in TETs' progression. According to our results, it may be helpful to design future trials with anti-PD-1 drugs to establish high-risk patients after surgery.
Collapse
Affiliation(s)
- Rossana Berardi
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Gaia Goteri
- Section of Pathological Anatomy and Histopathology, Università Politecnica delle Marche , Ancona, Italy
| | | | - Silvia Pagliaretta
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Vittorio Paolucci
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Miriam Caramanti
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Silvia Rinaldi
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Majed Refai
- Thoracic Surgery, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi , Ancona, Italy
| | - Cecilia Pompili
- Department of Thoracic Surgery, St. James's University Hospital , Leeds, UK
| | - Francesca Morgese
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Mariangela Torniai
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Giulia Marcantognini
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Giulia Ricci
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Paola Mazzanti
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Azzurra Onofri
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Francesca Bianchi
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| | - Armando Sabbatini
- Thoracic Surgery, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi , Ancona, Italy
| | - Stefano Cascinu
- Medical Oncology, Università Politecnica delle Marche, Ospedali Riuniti Umberto I-GM Lancisi-G Salesi , Ancona, Italy
| |
Collapse
|
49
|
Jain RK, Lara PN. Evolving Frontline Treatment Landscape for Advanced or Metastatic Renal Cell Carcinoma. KIDNEY CANCER 2020. [DOI: 10.3233/kca-200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rohit K. Jain
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Primo N. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
50
|
Khosravi N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Shahgoli VK, Hemmat N, Safarzadeh E, Baradaran B. Immune checkpoints in tumor microenvironment and their relevance to the development of cancer stem cells. Life Sci 2020; 256:118005. [PMID: 32593711 DOI: 10.1016/j.lfs.2020.118005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second cause of mortality in the world after cardiovascular disease. Various studies attribute the emergence of therapeutic resistance in tumors to the presence of cancer stem cells or cancer-initiating cells (CSC/CIC). These relatively rare cells because of their typical stemness features, are responsible for tumor cell progression and recurrence. Moreover, CSCs have immunomodulatory capabilities and through orchestrating, some immunological profiles can stay safe from host anticancer immunity, and provide immunotherapy resistance in cancer patients. Many studies have shown that CSCs by producing immune system inhibitory factors and interacting with immune checkpoint molecules like CD47, PDL-1, CTLA4, Tim3, and LAG3, are able to communicate with tumor microenvironment (TME) components and protect cancer cells from immune clearance. In this review, we summarize the CSCs immunological mechanisms and comprehensively discuss interactions between these cells and factors that are present in the TME to repress immune system responses and enhance tumor survival. Therefore, it seems that further studies on this topic will open new doors to improve the therapeutic approaches of malignant cancers.
Collapse
Affiliation(s)
- Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|