1
|
Liu A, Liang T, Wu W, Weng J, Wu H, Zhou F, Guo J. Protein concentration and analyzing charge variants in a co-formulation comprising three monoclonal antibodies: A cation-exchange chromatography approach. Int J Pharm 2025; 670:125138. [PMID: 39755343 DOI: 10.1016/j.ijpharm.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In the realm of therapeutic antibodies, co-formulations comprising two or more monoclonal antibodies (mAbs) have emerged as a promising strategy, offering enhanced treatment efficacy, improved efficiency, and prolonged intellectual property protection. These advantages have sparked significant interest among both patients and pharmaceutical companies. However, the quantification and analysis of individual mAbs within such co-formulations pose a substantial challenge due to their similar physicochemical properties. To address this challenge, we introduce a pH gradient cation exchange chromatography (CEX) method designed to effectively separate three mAbs that share significant similarities in molecular weight, structure, and isoelectric points (pIs) etc. This versatile approach not only facilitates the accurate quantification of each mAb's concentration and their respective ratios within the co-formulation, but also allows for the comprehensive characterization of all charge variants present. In the case of a co-formulation containing three antibodies, the developed CEX method demonstrated superior performance compared to other techniques. The method's robustness was further underscored by its qualification parameters, including acceptable precision (RSD ≤ 3 %), accuracy (95 %-115 % recovery), and linearity (R2 > 0.99) across a range of 10 to 30 μg load for each mAb. Moreover, the method has been successfully applied in stability studies to quantitatively analyze individual mAb concentrations within co-formulations, marking a significant advancement in the field. Through this work, we contribute a crucial analytical insight into mAb co-formulations, especially those comprising three or more molecules, underscoring its considerable potential to propel the field of biotherapeutic co-formulations forward.
Collapse
Affiliation(s)
- Anyuan Liu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Tiantian Liang
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Weiliang Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Jingwen Weng
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Hongbing Wu
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China
| | - Fangyuan Zhou
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| | - Jeremy Guo
- BioDev Drug Product Development Department, WuXi Biologics, 190 Hedan Road, Shanghai 200131, China.
| |
Collapse
|
2
|
Sreenivasan S, Rathore AS. Impact of Various Forced Oxidative Stress Factors in Rapid Degradation of mAb: Trastuzumab as a Case Study. Pharm Res 2025:10.1007/s11095-025-03816-4. [PMID: 39849217 DOI: 10.1007/s11095-025-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/01/2025] [Indexed: 01/25/2025]
Abstract
PURPOSE Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having H2O2 and exposed to UV light (case study 1), both bleomycin (BML) formulation and ferrous ions (Fe2+) (case study 2), and sodium hypochlorite (NaOCl) (case study 3). METHODS Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation. RESULTS Saline samples containing TmAb and 0.1% H2O2 incubated at 40ºC for 1 h in the presence of UV light showed increased monomer loss by more than 40% compared to TmAb sample without H2O2 exposed to UV light. Saline containing TmAb having both 0.1-unit BML and 0.25 mM Fe2+ showed increased monomer loss by more than 50% compared to TmAb in saline having only Fe2+ or BML. A higher TmAb degradation was also observed in saline containing 0.01% NaOCl compared to saline without NaOCl. Samples containing aggregates of mAb showed altered protein structure. Degradation of TmAb in saline increased with time, temperature, and concentrations of H2O2, Fe2+, and NaOCl. At different analysis time points, TmAb monomer loss was higher in saline compared to human serum filtrate, an in-vitro model. Aggregate particles (> 2 µm size) of TmAb were also observed in serum containing both Fe2+ and BML. CONCLUSION It can be concluded that rapid TmAb degradation significantly enhanced due to various stress factors, and the aggregates could result in enhanced immunogenic risk to the patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Iannone LF, Romozzi M, Russo A, Saporito G, De Santis F, Ornello R, Sances G, Vaghi G, Tassorelli C, Albanese M, Guerzoni S, Casalena A, Vollono C, Calabresi P, Prudenzano MP, Mampreso E, Volta GD, Valente MR, Avino G, Chiarugi A, Sacco S, Pistoia F. Association of anti-calcitonin gene-related peptide with other monoclonal antibodies for different diseases: A multicenter, prospective, cohort study. Eur J Neurol 2024; 31:e16450. [PMID: 39285638 PMCID: PMC11555159 DOI: 10.1111/ene.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 11/13/2024]
Abstract
BACKGROUND AND PURPOSE Although there is extensive evidence about the safety of monoclonal antibodies against calcitonin gene-related peptide (anti-CGRP mAbs) in combination with traditional drugs, scarce data are available on the safety of their combination with other mAbs. This study aimed to evaluate the 6-month effectiveness and tolerability of anti-CGRP mAbs in combination with other mAbs for different diseases. METHODS Patients included in the Italian Headache Registry and treated concomitantly with an anti-CGRP mAb and another mAb were included. Effectiveness outcomes for migraine included reduction from baseline of monthly headache days (MHDs), Migraine Disability Assessment (MIDAS) score, Headache Impact Test-6 (HIT-6) scores, and Patients' Global Impression of Change (PGIC) scale. Adverse events (AEs) were recorded. RESULTS Thirty-eight patients were included. In 27 patients (71.1%), the anti-CGRP mAb was added to a previously ongoing mAb. Nine patients (23.7%) discontinued one of the two mAbs before the end of treatment (seven discontinued the anti-CGRP mAb and two the other mAb). One patient discontinued for AEs. Anti-CGRP mAbs were discontinued due to ineffectiveness (n = 5, 55.5%) and one each (11.1%) for clinical remission and lost to follow-up. MHDs significantly decreased from baseline to 3 months (p < 0.0001) and 6 months (p < 0.001), as did the MIDAS and the HIT-6 scores at 3 and 6 months (p < 0.001). For anti-CGRP mAbs, 27.4% of patients reported PGIC ≥ 5 at 3 months and 48.3% at 6 months. Mild AEs associated with introduction of a second mAb were detected in six patients (15.8%). CONCLUSIONS In this real-world study, anti-CGRP mAbs showed safety and effectiveness when administered concomitantly with other mAbs.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Section of Clinical Pharmacology and Oncology, Department of Health SciencesUniversity of FlorenceFlorenceItaly
| | - Marina Romozzi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Antonio Russo
- Headache Center, Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Gennaro Saporito
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Federico De Santis
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Grazia Sances
- Headache Science and Neurorehabilitation UnitIRCCS Mondino FoundationPaviaItaly
| | - Gloria Vaghi
- Headache Science and Neurorehabilitation UnitIRCCS Mondino FoundationPaviaItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Cristina Tassorelli
- Headache Science and Neurorehabilitation UnitIRCCS Mondino FoundationPaviaItaly
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Maria Albanese
- Regional Referral Headache Center, Neurology UnitTor Vergata University HospitalRomeItaly
| | - Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology, and Clinical Metabolic Toxicology, Headache Center and Drug Abuse Laboratory of Clinical Pharmacology and Pharmacogenomics, Department of Specialist MedicinesAOU Policlinico di ModenaModenaItaly
| | | | - Catello Vollono
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paolo Calabresi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
| | - Maria Pia Prudenzano
- Headache Center, Department of Basic Medical Sciences, Neurosciences, and Sense OrgansUniversity of BariBariItaly
| | | | - Giorgio Dalla Volta
- Headache Center of Clinical Neurology of Istituto Clinico Città di BresciaBresciaItaly
| | - Maria Rosaria Valente
- Clinical NeurologyAzienda Sanitaria Universitaria Friuli Centrale, Presidio Ospedaliero Santa Maria della MisericordiaUdineItaly
| | - Gianluca Avino
- Neurology Unit, Ospedale Santo StefanoUSL Toscana CentroPratoItaly
| | - Alberto Chiarugi
- Section of Clinical Pharmacology and Oncology, Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Headache Center and Clinical Pharmacology UnitCareggi University HospitalFlorenceItaly
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| |
Collapse
|
4
|
Adams AC, Grav LM, Ahmadi S, Holst Dahl C, Ljungars A, Laustsen AH, Nielsen LK. Single-Batch Expression of an Experimental Recombinant Snakebite Antivenom Based on an Oligoclonal Mixture of Human Monoclonal Antibodies. Biotechnol J 2024; 19:e202400348. [PMID: 39380504 DOI: 10.1002/biot.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024]
Abstract
Oligoclonal antibodies, which are carefully defined mixtures of monoclonal antibodies, are valuable for the treatment of complex diseases, such as infectionss and cancer. In addition to these areas of medicine, they could be utilized for the treatment of snakebite envenoming, where recombinantly produced monoclonal human antibodies could overcome many of the drawbacks accompanying traditional antivenoms. However, producing multiple individual batches of monoclonal antibodies in an industrial setting is associated with significant costs. Therefore, it is attractive to produce oligoclonal antibodies by mixing multiple antibody-producing cell lines in a single batch to have only one upstream and downstream process. In this study, we selected four antibodies that target different toxins found in the venoms of various elapid snake species, such as mambas and cobras, and generated stable antibody-producing cell lines. Upon co-cultivation, we found the cell line ratios to be stable over 7 days. The purified oligoclonal antibody cocktail contained the anticipated antibody concentrations and bound to the target toxins as expected. These results thus provide a proof of concept for the strategy of mixing multiple cell lines in a single batch to manufacture tailored antivenoms recombinantly, which could be utilized for the treatment of snakebite envenoming and in other fields where oligoclonal antibody mixtures could find utility.
Collapse
Affiliation(s)
- Anna C Adams
- Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lise M Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Camilla Holst Dahl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lars K Nielsen
- Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Biotechnology and Nanotechnology, St Lucia, Australia
| |
Collapse
|
5
|
Alexander S, Harker-Murray P, Hayashi RJ. Editorial: Non-cellular immunotherapies in pediatric malignancies. Front Immunol 2024; 15:1379278. [PMID: 38449864 PMCID: PMC10915082 DOI: 10.3389/fimmu.2024.1379278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Affiliation(s)
- Sarah Alexander
- Pediatrics, Division of Haematology/Oncology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Paul Harker-Murray
- Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert J. Hayashi
- Pediatrics, Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
7
|
Lu J, Jiang Y, Guo J, Chen L, Liu F, Li Z, Liu X, Du P, Yu Y, Wang R, Yang Z. A human bispecific antibody neutralizes botulinum neurotoxin serotype A. Sci Rep 2023; 13:20806. [PMID: 38012220 PMCID: PMC10681988 DOI: 10.1038/s41598-023-48008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Botulinum neurotoxin (BoNT) shows high lethality and toxicity, marking it as an important biological threat. The only effective post-exposure therapy is botulinum antitoxin; however, such products have great potential for improvement. To prevent or treat BoNT, monoclonal antibodies (mAbs) are promising agents. Herein, we aimed to construct a bispecific antibody (termed LUZ-A1-A3) based on the anti-BoNT/A human monoclonal antibodies (HMAb) A1 and A3. LUZ-A1-A3 binds to the Hc and L-HN domains of BoNT/A, displaying potent neutralization activity against BoNT/A (124 × higher than that of HMAb A1 or HMAb A3 alone and 15 × higher than that of the A1 + A3 combination). LUZ-A1-A3 provided effective protection against BoNT/A in an in vivo mouse model. Mice were protected from infection with 500 × LD50 of BoNT/A by LUZ-A1-A3 from up to 7 days before intraperitoneal administration of BoNT/A. We also demonstrated the effective therapeutic capacity of LUZ-A1-A3 against BoNT/A in a mouse model. LUZ-A1-A3 (5 μg/mouse) neutralized 20 × LD50 of BoNT/A at 3 h after intraperitoneal BoNT/A administration and complete neutralized 20 × LD50 of BoNT/A at 0.5 h after intraperitoneal BoNT/A administration. Thus, LUZ-A1-A3 is a promising agent for the pre-exposure prophylaxis and post-exposure treatment of BoNT/A.
Collapse
Affiliation(s)
- Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fujia Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhiying Li
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xuyang Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
8
|
Kim JW, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Lee JH, Shin HG, Yang HR, Choi HL, Shim HB, Lee S. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Front Immunol 2023; 14:1271508. [PMID: 37822941 PMCID: PMC10562541 DOI: 10.3389/fimmu.2023.1271508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Bo Shim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Huan T, Guan B, Li H, Tu X, Zhang C, Tang B. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccin Immunother 2023; 19:2256904. [PMID: 37772505 PMCID: PMC10543353 DOI: 10.1080/21645515.2023.2256904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Monoclonal antibody-based targeted therapies have greatly improved treatment options for patients by binding to the innate immune system. However, the long-term efficacy of such antibodies is limited by mechanisms of drug resistance. Over the last 50 years, with advances in protein engineering technology, more and more bispecific antibody (bsAb) platforms have been engineered to meet diverse clinical needs. Bispecific NK cell engagers (BiKEs) or tri-specific NK cell engagers (TriKEs) allow for direct targeting of immune cells to tumors, and therefore resistance and serious adverse effects are greatly reduced. Many preclinical and clinical trials are currently underway, depicting the promise of antibody-based natural killer cell engager therapeutics. In this review, we compile worldwide efforts to explore the involvement of NK cells in bispecific antibodies. With a particular emphasis on lessons learned, we focus on preclinical and clinical studies in malignancies and discuss the reasons for the limited success of NK-cell engagers against solid tumors, offering plausible new ideas for curing some advanced cancers shortly.
Collapse
Affiliation(s)
- Tian Huan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bugao Guan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Hongbo Li
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Xiu Tu
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Chi Zhang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- Department of Central Laboratory, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
10
|
Hong Y, Nam SM, Moon A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res 2023; 46:131-148. [PMID: 36877356 DOI: 10.1007/s12272-023-01433-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
Engineering approaches using antibody drug conjugates (ADCs) and bispecific antibodies (bsAbs) are designed to overcome the limitations of conventional chemotherapies and therapeutic antibodies such as drug resistance and non-specific toxicity. Cancer immunotherapies have been shown to be clinically successful with checkpoint blockade and chimeric antigen receptor T cell therapy; however, overactive immune systems still represent a major problem. Given the complexity of a tumor environment, it would be advantageous to have a strategy targeting two or more molecules. We highlight the necessity and importance of a multi-target platform strategy against cancer. Approximately 400 ADCs and over 200 bsAbs are currently being clinically developed for several indications, with promising signs of therapeutic activity. ADCs include antibodies that recognize tumor antigens, linkers that stably connect drugs, and powerful cytotoxic drugs, also known as payloads. ADCs have direct therapeutic effects by targeting cancers with a strong payload. Another type of drug that uses antibodies are bsAbs, targeting two antigens by linking to antigen recognition sites or bridging cytotoxic immune cells to tumor cells, resulting in cancer immunotherapy. Three bsAbs and one ADC have been approved for use by the FDA and the EMA in 2022. Among these, two of the bsAbs and the one ADC are used for cancers. We introduced that bsADC, a combination of ADC and bsAbs, has yet to be approved and several candidates are in the early stages of clinical development in this review. bsADCs technology helps increase the specificity of ADCs or the internalization and killing ability of bsAbs. We also briefly discuss the application of click chemistry in the efficient development of ADCs and bsAbs as a conjugation strategy. The present review summarizes the ADCs, bsAbs, and bsADCs that have been approved for anti-cancer or currently in development. These strategies selectively deliver drugs to malignant tumor cells and can be used as therapeutic approaches for various types of cancer.
Collapse
Affiliation(s)
- Yeji Hong
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Su-Min Nam
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea.
| |
Collapse
|
11
|
Bittner B. Customer-centric product presentations for monoclonal antibodies. AAPS OPEN 2023; 9:3. [PMID: 36713112 PMCID: PMC9869842 DOI: 10.1186/s41120-022-00069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023] Open
Abstract
Delivering customer-centric product presentations for biotherapeutics, such as monoclonal antibodies (mAbs), represents a long-standing and paramount area of engagement for pharmaceutical scientists. Activities include improving experience with the dosing procedure, reducing drug administration-related expenditures, and ultimately shifting parenteral treatments outside of a controlled healthcare institutional setting. In times of increasingly cost-constrained markets and reinforced with the coronavirus pandemic, this discipline of "Product Optimization" in healthcare has gained momentum and changed from a nice-to-have into a must. This review summarizes latest trends in the healthcare ecosystem that inform key strategies for developing customer-centric products, including the availability of a wider array of sustainable drug delivery options and treatment management plans that support dosing in a flexible care setting. Three disease area archetypes with varying degree of implementation of customer-centric concepts are introduced to highlight relevant market differences and similarities. Namely, rheumatoid arthritis and inflammatory bowel disease, multiple sclerosis, and oncology have been chosen due to differences in the availability of subcutaneously dosed and ready-to-use self-administration products for mAb medicines and their follow-on biologics. Different launch scenarios are described from a manufacturer's perspective highlighting the necessity of platform approaches. To unfold the full potential of customer-centric care, value-based healthcare provider reimbursement schemes that incentivize the efficiency of care need to be broadly implemented.
Collapse
Affiliation(s)
- Beate Bittner
- F. Hoffmann-La Roche Ltd., Global Product Strategy - Product Optimization, Grenzacher Strasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
12
|
Rubio-Pérez L, Lázaro-Gorines R, Harwood SL, Compte M, Navarro R, Tapia-Galisteo A, Bonet J, Blanco B, Lykkemark S, Ramírez-Fernández Á, Ferreras-Gutiérrez M, Domínguez-Alonso C, Díez-Alonso L, Segura-Tudela A, Hangiu O, Erce-Llamazares A, Blanco FJ, Santos C, Rodríguez-Peralto JL, Sanz L, Álvarez-Vallina L. A PD-L1/EGFR bispecific antibody combines immune checkpoint blockade and direct anti-cancer action for an enhanced anti-tumor response. Oncoimmunology 2023; 12:2205336. [PMID: 37114242 PMCID: PMC10128431 DOI: 10.1080/2162402x.2023.2205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) with antibodies has shown durable clinical responses in a wide range of cancer types, but the overall response rate is still limited. Other effective therapeutic modalities to increase the ICB response rates are urgently needed. New bispecific antibody (bsAb) formats combining the ICB effect and a direct action on cancer cells could improve the efficacy of current immunotherapies. Here, we report the development of a PD-L1/EGFR symmetric bsAb by fusing a dual-targeting tandem trimmer body with the human IgG1 hinge and Fc regions. The bsAb was characterized in vitro and the antitumor efficacy was evaluated in humanized mice bearing xenografts of aggressive triple-negative breast cancer and lung cancer. The IgG-like hexavalent bsAb, designated IgTT-1E, was able to simultaneously bind both EGFR and PD-L1 antigens, inhibit EGF-mediated proliferation, effectively block PD-1/PD-L1 interaction, and induce strong antigen-specific antibody-dependent cellular cytotoxicity activity in vitro. Potent therapeutic efficacies of IgTT-1E in two different humanized mouse models were observed, where tumor growth control was associated with a significantly increased proportion of CD8+ T cells. These results support the development of IgTT-1E for the treatment of EGFR+ cancers.
Collapse
Affiliation(s)
- Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Seandean L. Harwood
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus C, Denmark
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Department of Antibody Engineering, Leadartis SL, QUBE Technology Park, Madrid, Spain
| | - Francisco J. Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - José L. Rodríguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Pathology, Universidad Complutense, Madrid, Spain
- Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- CONTACT Luis Álvarez-Vallina Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Avda. Cordoba s/n, Madrid28041, Spain
| |
Collapse
|
13
|
Kalaninová Z, Fojtík L, Chmelík J, Novák P, Volný M, Man P. Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2718:303-334. [PMID: 37665467 DOI: 10.1007/978-1-0716-3457-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Fojtík
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michael Volný
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
14
|
Hasan MM, Mohanan P, Bibi S, Babu C, Roy YJ, Mathews A, Khatri G, Papadakos SP. Radiotherapy in Breast Cancer. INTERDISCIPLINARY CANCER RESEARCH 2023:69-95. [DOI: 10.1007/16833_2023_176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
15
|
Bergado-Báez G, Gonzalez Suarez N, García LC, Pérez-Martínez D, Hernández-Fernández DR, Fundora-Barrios T, Rodríguez-Álvarez A, Díaz-Ordaz GD, Lindzen M, Yarden Y, Sánchez-Ramírez B. Polyclonal antibody-induced downregulation of HER1/EGFR and HER2 surpasses the effect of combinations of specific registered antibodies. Front Oncol 2022; 12:951267. [PMID: 36408164 PMCID: PMC9667895 DOI: 10.3389/fonc.2022.951267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background Antitumor therapies targeting HER1/EGFR and HER2, such as monoclonal antibodies (MAbs) and tyrosine-kinase inhibitors (TKIs), have demonstrated a significant clinical benefit, but the emergence of resistance limits long-term efficacy. While secondary HER1 mutations confer tolerance to TKI, compensatory upregulation of HER2 drives resistance to anti-HER1 MAbs, which identifies MAb combinations targeting both receptors as an attractive therapeutic strategy. Nevertheless, toxicity hampers the clinical validation of this approach. Alternatively, cancer vaccines may induce antibodies directed against several antigens with less concern about induced toxicity. Methods Polyclonal antibodies (PAbs) targeting HER1 and HER2 were induced in mice or rabbits through immunization. Recognition of different epitopes on targets by PAbs was validated by phage-display technology. Receptor downregulation was evaluated by flow cytometry, immunofluorescence, and Western blot. MTT assays assessed cytotoxicity, while the antitumor effect of PAbs was assayed in nude mice. Results PAbs promoted degradation of HER1 and HER2 regarding clinical MAbs or their combinations. As a result, inhibition of cytotoxicity on tumor cell lines was improved, even in the presence of oncogenic mutations in HER1, as well as in cetuximab-insensitive cells. Accordingly, the antitumor effect of vaccination-induced PAbs was observed in lung tumor lines representative of sensitivity or resistance to HER1 targeting therapies. Conclusions Immunization against HER1 and HER2 receptors offers an alternative to passive administration of combinations of MAbs, since vaccination-induced PAbs promote the downregulation of both receptors and they have a higher impact on the survival of tumor cells.
Collapse
Affiliation(s)
- Gretchen Bergado-Báez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Narjara Gonzalez Suarez
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à, Montréal, QC, Canada
| | - Lisset Chao García
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | - Dayana Pérez-Martínez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Talia Fundora-Barrios
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Belinda Sánchez-Ramírez
- Immunology and Immunotherapy Direction, Center of Molecular Immunology, Havana, Cuba
- *Correspondence: Belinda Sánchez-Ramírez,
| |
Collapse
|
16
|
T-cell membrane coating for improving polymeric nanoparticle-based cancer therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Candreva J, Esterman AL, Ge D, Patel P, Flagg SC, Das TK, Li X. Dual‐detection approach for a charge variant analysis of monoclonal antibody combination products using imaged capillary isoelectric focusing. Electrophoresis 2022; 43:1701-1709. [DOI: 10.1002/elps.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jason Candreva
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Abbie L. Esterman
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Derek Ge
- Pharmaceutical Sciences University of Michigan Ann Arbor Michigan USA
| | - Pritesh Patel
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Shannon C. Flagg
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Tapan K. Das
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| | - Xue Li
- Biologics Development Bristol Myers Squibb New Brunswick New Jersey USA
| |
Collapse
|
18
|
Rau A, Janssen N, Kühl L, Sell T, Kalmykova S, Mürdter TE, Dahlke MH, Sers C, Morkel M, Schwab M, Kontermann RE, Olayioye MA. Triple Targeting of HER Receptors Overcomes Heregulin-mediated Resistance to EGFR Blockade in Colorectal Cancer. Mol Cancer Ther 2022; 21:799-809. [PMID: 35247930 DOI: 10.1158/1535-7163.mct-21-0818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Current treatment options for patients with advanced colorectal cancers include anti-EGFR/HER1 therapy with the blocking antibody cetuximab. Although a subset of patients with KRAS WT disease initially respond to the treatment, resistance develops in almost all cases. Relapse has been associated with the production of the ligand heregulin (HRG) and/or compensatory signaling involving the receptor tyrosine kinases HER2 and HER3. Here, we provide evidence that triple-HER receptor blockade based on a newly developed bispecific EGFR×HER3-targeting antibody (scDb-Fc) together with the HER2-blocking antibody trastuzumab effectively inhibited HRG-induced HER receptor phosphorylation, downstream signaling, proliferation, and stem cell expansion of DiFi and LIM1215 colorectal cancer cells. Comparative analyses revealed that the biological activity of scDb-Fc plus trastuzumab was sometimes even superior to that of the combination of the parental antibodies, with PI3K/Akt pathway inhibition correlating with improved therapeutic response and apoptosis induction as seen by single-cell analysis. Importantly, growth suppression by triple-HER targeting was recapitulated in primary KRAS WT patient-derived organoid cultures exposed to HRG. Collectively, our results provide strong support for a pan-HER receptor blocking approach to combat anti-EGFR therapy resistance of KRAS WT colorectal cancer tumors mediated by the upregulation of HRG and/or HER2/HER3 signaling.
Collapse
Affiliation(s)
- Alexander Rau
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,IRI Life Sciences and Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Svetlana Kalmykova
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,IRI Life Sciences and Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Marc-H Dahlke
- Department of General and Visceral Surgery, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
19
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
20
|
Yang J, Zhao B, Zhou H, Jia B, Chen L. Blood glucose related adverse drug reaction of antitumor monoclonal antibodies: a retrospective analysis using Vigibase. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000118893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jincheng Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Bin Zhao
- Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Haiyan Zhou
- Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Bei Jia
- Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Lianzhen Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, China
| |
Collapse
|
21
|
Nell RJ, Zoutman WH, Calbet-Llopart N, Garcia AP, Menger NV, Versluis M, Puig S, Gruis NA, van der Velden PA. Accurate Quantification of T Cells in Copy Number Stable and Unstable DNA Samples Using Multiplex Digital PCR. J Mol Diagn 2021; 24:88-100. [PMID: 34775028 DOI: 10.1016/j.jmoldx.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
An accurate T-cell quantification is prognostically and therapeutically relevant in various malignancies. We previously developed a digital PCR-based approach offering a precise T-cell enumeration in small amounts of DNA. However, it may be challenging to apply this method in malignant specimens, as copy number instability can disturb the underlying mathematical model. For example, approximately 24% of the tumors from The Cancer Genome Atlas pan-cancer data set carried a copy number alteration affecting our TRB gene T-cell marker, which would cause an underestimation or overestimation of the T-cell fraction. In this study, we introduce a multiplex digital PCR experimental setup to quantify T cells in copy number unstable DNA samples. By implementing a so-called regional corrector, genetic alterations involving the T-cell marker locus can be recognized and corrected for. This novel setup is evaluated mathematically in silico and validated in vitro by measuring T-cell presence in various samples with a known T-cell fraction. The utility of the approach is further demonstrated in copy number altered cutaneous melanomas. Our novel multiplex setup provides a simple, but accurate, DNA-based T-cell quantification in both copy number stable and unstable specimens. This approach has potential clinical and diagnostic applications, as it does not depend on availability of T-cell epitopes, has low requirements for sample quantity and quality, and can be performed in a relatively easy experiment.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Neus Calbet-Llopart
- Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Centro Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Adriana P Garcia
- Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nino V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Puig
- Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Centro Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
22
|
Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving Biologics' Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers (Basel) 2021; 13:cancers13184620. [PMID: 34572847 PMCID: PMC8465647 DOI: 10.3390/cancers13184620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The approval of the two antibody combinations trastuzumab/pertuzumab and ipilimumab/nivolumab in oncology has paved the way for novel antibody combinations or oligoclonal antibody mixtures to improve their efficacy in cancer. The underlying biological mechanisms and challenges of these strategies will be discussed using data from clinical trials listed in databases. These therapeutic combinations also lead to questions on how to optimize their formulation and delivery to induce a therapeutic polyclonal response in patients with cancer. Abstract Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.
Collapse
Affiliation(s)
- Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +33-411-283-110
| | - Laurent Gros
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| |
Collapse
|
23
|
Paul S, Sa G. Curcumin as an Adjuvant to Cancer Immunotherapy. Front Oncol 2021; 11:675923. [PMID: 34485117 PMCID: PMC8415504 DOI: 10.3389/fonc.2021.675923] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The components of the immune system play a very sincere and crucial role in combating tumors. However, despite their firm efforts of elimination, tumor cells cleverly escape the surveillance process by adopting several immune evasion mechanisms. The conversion of immunogenicity of tumor microenvironment into tolerogenic is considered as a prime reason for tumor immune escape. Therapeutically, different immunotherapies have been adopted to block such immune escaping routes along with better clinical outcomes. Still, the therapies are haunted by several drawbacks. Over time, curcumin has been considered as a potential anti-cancer molecule. Its potentialities have been recorded against the standard hallmarks of cancer such as continuous proliferation, escaping apoptosis, continuous angiogenesis, insensitivity to growth inhibitors, tissue invasion, and metastasis. Hence, the diversity of curcumin functioning has already been established and exploration of its application with immunotherapies might open up a new avenue for scientists and clinicians. In this review, we briefly discuss the tumor's way of immune escaping, followed by various modern immunotherapies that have been used to encounter the escaping paths and their minute flaws. Finally, the conclusion has been drawn with the application of curcumin as a potential immune-adjuvant, which fearlessly could be used with immunotherapies for best outcomes.
Collapse
Affiliation(s)
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
24
|
Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific Antibodies: From Research to Clinical Application. Front Immunol 2021; 12:626616. [PMID: 34025638 PMCID: PMC8131538 DOI: 10.3389/fimmu.2021.626616] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (BsAbs) are antibodies with two binding sites directed at two different antigens or two different epitopes on the same antigen. The clinical therapeutic effects of BsAbs are superior to those of monoclonal antibodies (MoAbs), with broad applications for tumor immunotherapy as well as for the treatment of other diseases. Recently, with progress in antibody or protein engineering and recombinant DNA technology, various platforms for generating different types of BsAbs based on novel strategies, for various uses, have been established. More than 30 mature commercial technology platforms have been used to create and develop BsAbs based on the heterologous recombination of heavy chains and matching of light chains. The detailed mechanisms of clinical/therapeutic action have been demonstrated with these different types of BsAbs. Three kinds of BsAbs have received market approval, and more than 110 types of BsAbs are at various stages of clinical trials. In this paper, we elaborate on the classic platforms, mechanisms, and applications of BsAbs. We hope that this review can stimulate new ideas for the development of BsAbs and improve current clinical strategies.
Collapse
Affiliation(s)
- Jiabing Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yicheng Mo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Menglin Tang
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Junjie Shen
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanan Qi
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Wenxu Zhao
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Yi Huang
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanmin Xu
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Cheng Qian
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
25
|
Xu M, Zhang K, Song J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front Pharmacol 2021; 12:623674. [PMID: 33935716 PMCID: PMC8085499 DOI: 10.3389/fphar.2021.623674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.
Collapse
Affiliation(s)
- Mengda Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| |
Collapse
|
26
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
27
|
Shah A, Rauth S, Aithal A, Kaur S, Ganguly K, Orzechowski C, Varshney GC, Jain M, Batra SK. The Current Landscape of Antibody-based Therapies in Solid Malignancies. Am J Cancer Res 2021; 11:1493-1512. [PMID: 33391547 PMCID: PMC7738893 DOI: 10.7150/thno.52614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.
Collapse
|
28
|
Hoseini SS, Espinosa-Cotton M, Guo HF, Cheung NKV. Overcoming leukemia heterogeneity by combining T cell engaging bispecific antibodies. J Immunother Cancer 2020; 8:jitc-2020-001626. [PMID: 33239418 PMCID: PMC7689592 DOI: 10.1136/jitc-2020-001626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Leukemia represents about 5% of all human cancers. Despite advances in therapeutics, a substantial number of patients succumb to the disease. Several subtypes of leukemia are inherently more resistant to treatment despite intensive chemotherapy or targeted therapy. Methods Here we describe the generation of T cell engaging (CD3) bispecific antibodies (BsAbs) built on humanized IgG frameworks using the IgG(L)-scFv format against two targets expressed on acute lymphoblastic leukemia (ALL) and on acute myeloid leukemia (AML). Results Each BsAb mediated potent anti-leukemia effect against ALL (CD19) and AML (CD33) in vitro and in xenograft models. Importantly, the CD19-specific BsAb (BC250) was effective against hematogenous spread preventing metastases to liver and kidney in mice bearing ALL and Burkitt’s lymphoma xenografts. BC250 was more potent than the The Food and Drug Administration (FDA)-approved BsAb blinatumomab against ALL xenografts in vivo as measured by tumor bioluminescence and mouse survival. Furthermore, the combination of the CD19 and CD33 BsAbs in two xenograft models of mixed phenotype acute leukemia (biphenotypic and bilineal leukemia) was far superior than monotherapy with either of the BsAbs alone. Conclusions Selective combinations of these leukemia-specific BsAb offer the potential to overcome tumor heterogeneity or clonal escape in the modern era of antibody-based T cell-driven immunotherapy.
Collapse
Affiliation(s)
| | | | - Hong-Fen Guo
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
29
|
Washah HN, Salifu EY, Soremekun O, Elrashedy AA, Munsamy G, Olotu FA, Soliman ME. Integrating Bioinformatics Strategies in Cancer Immunotherapy: Current and Future Perspectives. Comb Chem High Throughput Screen 2020; 23:687-698. [PMID: 32338212 DOI: 10.2174/1386207323666200427113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
For the past few decades, the mechanisms of immune responses to cancer have been
exploited extensively and significant attention has been given into utilizing the therapeutic
potential of the immune system. Cancer immunotherapy has been established as a promising
innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through
various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer
therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet
to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help
transform the treatment paradigm of several tumors by providing a therapeutically efficient method of
cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the
application of immunotherapy. Herein, we gave an insightful overview of the types of
immunotherapy techniques used currently, their mechanisms of action, and discussed some
bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides
some future perspectives in the use of bioinformatics tools for immunotherapy.
Collapse
Affiliation(s)
- Houda N. Washah
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Ahmed A. Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
30
|
Zhang X, Zhang Z, Cao M, Liu B, Mori M, Luoh SW, Bergan R, Liu Y, Liu Y. A Randomized Parallel Controlled Phase II Trial of Recombinant Human Endostatin Added to Neoadjuvant Chemotherapy for Stage III Breast Cancer. Clin Breast Cancer 2020; 20:291-299.e3. [PMID: 32482525 DOI: 10.1016/j.clbc.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND To explore the potential advantage of preoperative anti-angiogenosis therapy, we implemented a study to evaluate the efficacy of recombinant human endostatin (EN) in combination with neoadjuvant chemotherapy in the treatment of stage III breast cancer. PATIENTS AND METHODS Eighty-seven patients were randomized to neoadjuvant TEC (docetaxel, epirubicin, and cyclophosphamide) or to EN+TEC, followed by surgery. The primary endpoint was the objective response rate (ORR). Secondary endpoints included pathologic complete response (pCR), relapse-free survival (RFS), overall survival (OS), and safety. RESULTS Patients receiving EN+TEC achieved significantly higher ORR (81.82%; 36/44) compared with those receiving TEC (58.14%; 25/43; P=0.016). There was a non-significant trend of increased pCR with EN treatment (15.91% vs. 6.98%). The median follow-up was 54 months and revealed a significantly higher RFS with EN+TEC (median, 67.3 months; 95% confidence interval [CI], 61.0-73.7 months), compared with TEC (median, 55.0 months; 95% CI, 48.3-61.7 months; P =0.014). EN+TEC also significantly improved OS (74.2 months; 95% CI, 68.9-79.6 months), compared with TEC (59.1 months; 95% CI, 52.0-66.1 months; P =0 .006). The 3- and 5-year OS rates are estimated to be 88.5% and 82.8% with EN+TEC and 76.7% and 54.4% with TEC, respectively. Cox proportional regression analyses showed that EN+TEC was associated with improved OS (hazard ratio, 0.377; 95% CI, 0.418-0.959; P =0 .041). There was no significant difference in adverse events between EN+TEC and TEC. CONCLUSION The combination of EN+TEC neoadjuvant chemotherapy significantly improved the ORR and OS, suggesting a benefit of adding anti-angiogenesis to standard chemotherapy in the treatment of locally advanced breast cancer.
Collapse
Affiliation(s)
- Xiangmei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenzhen Zhang
- OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, OR
| | - Miao Cao
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Beichen Liu
- Department of Hematology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shiuh-Wen Luoh
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Yueping Liu
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunjiang Liu
- Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
31
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
32
|
Maruani A, Szijj PA, Bahou C, Nogueira JCF, Caddick S, Baker JR, Chudasama V. A Plug-and-Play Approach for the De Novo Generation of Dually Functionalized Bispecifics. Bioconjug Chem 2020; 31:520-529. [DOI: 10.1021/acs.bioconjchem.0c00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Peter A. Szijj
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Calise Bahou
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - João C. F. Nogueira
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Stephen Caddick
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - James R. Baker
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
33
|
Abstract
Les anticorps sont désormais devenus d’une utilisation courante dans un large champ thérapeutique qui n’est plus restreint à la cancérologie et à l’inflammation. Cette explosion du domaine conduit à des besoins nouveaux qui peuvent être mieux remplis par des molécules inspirées mais différentes des anticorps classiques. En particulier, la molécule anticorps a de multiples fonctions qui ne sont pas toujours nécessaires, comme sa capacité à recruter les cellules du système immunitaire, à se lier de façon bivalente à sa cible ou à présenter une demi-vie plasmatique élevée. En revanche, dans la grande majorité des applications, sa remarquable capacité à reconnaître spécifiquement sa cible moléculaire et surtout sa diversité de reconnaissance doivent être conservées. De plus, les anticorps sont des molécules de très haut poids moléculaire, coûteuses à produire et qui présentent des propriétés physicochimiques limitées ne permettant pas leur utilisation dans des milieux agressifs. Finalement, dans certaines applications thérapeutiques, la grande taille de la molécule (environ 150 kDa) peut également limiter sa diffusion dans les tissus et empêcher la reconnaissance de certaines structures moléculaires peu accessibles. Pour répondre à ces limitations, de nombreux formats alternatifs aux anticorps entiers ont été développés au cours de ces vingt dernières années. Les applications couvrent les domaines de la biotechnologie, du diagnostic in vitro et in vivo et de la thérapie. Deux grandes familles de molécules permettent de couvrir ce champ et seront présentées dans cette mini-revue. Une première famille s’appuie sur la diversité naturelle des anticorps mais en en réduisant la taille, comme les fragments d’anticorps classiques (Fab, scFv) ou ceux provenant des camélidés ou des requins (VHH, V-NAR). La deuxième famille a été développée en partant des propriétés finales désirées et notamment la stabilité en milieu extrême et la productivité en système simple et économique de production comme l’utilisation de bactéries et en y greffant des propriétés de liaison comparables aux anticorps par des méthodes d’évolution moléculaire dirigée in vitro. Cette mini-revue se concentrera sur les molécules les plus avancées, mais le domaine est en très forte et rapide expansion. Il faut noter que beaucoup de ces molécules, voire ces approches, sont couvertes par des brevets et sont souvent développées dans le cadre de jeunes sociétés innovantes dont certaines ont déjà été rachetées par de grands groupes de la pharmacie.
Collapse
|
34
|
Larbouret C, Poul MA, Chardès T. [Mimicking polyclonal immune response in therapy: from combination of two monoclonal antibodies to oligoclonal antibody-based mixtures]. Med Sci (Paris) 2020; 35:1083-1091. [PMID: 31903921 DOI: 10.1051/medsci/2019216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical effectiveness remains limited in some cases. Associations of antibodies binding to the same target (homo-combination) or to several different targets (hetero-combination), thereby mimicking a polyclonal humoral immune response, have demonstrated a therapeutic improvement in pre-clinical and clinical trials, mainly in the field of oncology and infectious diseases. The combinations increase the efficacy of the biological responses and override resistance mechanisms observed with antibody monotherapy. The most common method of formulating and administering antibody combinations is a separate formulation, with sequential injection of each antibody as individual drug substance. Alternatively, combined formulations are developed where the separately-produced antibodies are mixed before administration or produced simultaneously by a single cell line, or a mixture of cell lines as a polyclonal master cell bank. The regulation, the toxicity and the injection sequence of these oligoclonal antibody-based mixtures remain points to be clarified and optimized for a better therapeutic effect.
Collapse
Affiliation(s)
- Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Marie-Alix Poul
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), 34298 Montpellier, France - Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
35
|
Abstract
Monoclonal antibodies are among the most significant biological tools used in medicine and biology that have revolutionized the field of diagnostics, therapeutics, and targeted drug delivery systems for many diseases. Among them, rabbit monoclonal antibodies have attracted significant attention for having high affinity and specificity. During the past few decades, different techniques have been developed to produce monoclonal antibodies. Single B cell cloning technology offers many advantages compared to other methods and has been used to generate monoclonal antibodies from different species including rabbits. This review briefly describes some of these methods, with main focus on single B cell cloning and production of rabbit monoclonal antibodies.
Collapse
|
36
|
Schokker S, Fusetti F, Bonardi F, Molenaar RJ, Mathôt RA, van Laarhoven HW. Development and validation of an LC-MS/MS method for simultaneous quantification of co-administered trastuzumab and pertuzumab. MAbs 2020; 12:1795492. [PMID: 32744170 PMCID: PMC7531571 DOI: 10.1080/19420862.2020.1795492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 10/28/2022] Open
Abstract
Given the increasing use of combination therapy with multiple monoclonal antibodies (mAbs), there is a clinical need for multiplexing assays. For the frequently co-administered anti-human epidermal growth factor receptor 2 (HER2) mAbs trastuzumab and pertuzumab, we developed a high-throughput and robust hybrid ligand-binding liquid chromatography-mass spectrometry (LC-MS)/MS quantitative assay. Nanomolar concentrations of trastuzumab and pertuzumab were determined in 10 µL serum samples after extraction by affinity purification through protein A beads, followed by on-bead reduction, alkylation, and trypsin digestion. After electrospray ionization, quantification was obtained by multiple reaction monitoring LC-MS/MS using SILuMab as an internal standard. The method was validated according to the current guidelines from the US Food and Drug Administration and the European Medicines Agency. Assay linearity was established in the ranges 0.250-250 μg/mL for trastuzumab and 0.500-500 μg/mL for pertuzumab. The method was accurate and selective for the simultaneous determination of trastuzumab and pertuzumab in clinical samples, thereby overcoming the limitation of ligand binding assays that cannot quantify mAbs targeting the same receptor. Furthermore, this method requires a small blood volume, which reduces blood collection time and stress for patients. The assay robustness was verified in a clinical trial where trastuzumab and pertuzumab concentrations were determined in 670 serum samples. As we used commercially available reagents and standards, the described generic bioanalytical strategy can easily be adapted to multiplex quantifications of other mAb combinations in non-clinical and clinical samples.
Collapse
Affiliation(s)
- Sandor Schokker
- Department of Medical Oncology, Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Fabrizia Fusetti
- Department of Business Development Bioanalysis Europe, QPS Netherlands BV, Groningen, The Netherlands
| | - Francesco Bonardi
- Department of Business Development Bioanalysis Europe, QPS Netherlands BV, Groningen, The Netherlands
| | - Remco J. Molenaar
- Department of Medical Oncology, Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A.A. Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W.M. van Laarhoven
- Head of Department of Medical Oncology, Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147:104353. [PMID: 31306775 DOI: 10.1016/j.phrs.2019.104353] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Immune system has critical roles in fighting against several diseases like cancer. Cancer cells evolve several ways to escape from the immune system to remain alive and trigger new phases of cancer progression. Regulatory T cells are one of the key components in tumor immune tolerance and contribute to the evasion of cancer cells from the immune system. Targeting regulatory T cells could provide new horizons in designing and development of effective therapeutic platforms for the treatment of various malignancies. Curcumin is the bioactive pigment of turmeric and a well-known phytochemical with a wide range of pharmacological activities. A growing body of evidence has demonstrated that curcumin affects manifold molecular pathways that are implicated in tumorigenesis and cancer metastasis. In this regard, some studies have indicated that this phytochemical could target regulatory T cells and convert them into T helper 1 cells, which possess anti-tumor effects. On the contrary, curcumin is able to increase the number of regulatory T cells in other conditions such as inflammatory bowel disease. Herein, we describe the anti-cancer roles of curcumin via targeting regulatory T cells. Moreover, we summarize the effects of curcumin on regulatory T cell population in other diseases.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201:103-119. [PMID: 31028837 DOI: 10.1016/j.pharmthera.2019.04.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Bispecific antibodies (bsAbs) are antibodies that bind two distinct epitopes to cancer.. For use in oncology, one bsAb has been approved and 57 bsAbs are in clinical trials, none of which has reached phase 3. These bsAbs show great variability in design and mechanism of action. The various designs are often linked to the mechanisms of actions. The majority of bsAbs engage immune cells to destroy tumor cells. However, some bsAbs are also used to deliver payloads to tumors or to block tumor signaling pathways. This review provides insight into the choice of construct for bsAbs, summarizes the clinical development of bsAbs in oncology and identifies subsequent challenges.
Collapse
Affiliation(s)
- Frans V Suurs
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
39
|
Ramos‐de‐la‐Peña AM, González‐Valdez J, Aguilar O. Protein A chromatography: Challenges and progress in the purification of monoclonal antibodies. J Sep Sci 2019; 42:1816-1827. [DOI: 10.1002/jssc.201800963] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Oscar Aguilar
- Tecnologico de MonterreySchool of Engineering and Science Monterrey NL Mexico
| |
Collapse
|
40
|
Abstract
T cells fulfill a central role in cell-mediated immunity and can be found in the circulation and lymphoid organs upon maturation. For clinical applications, it can be important to quantify (infiltrated) T cells accurately in a variety of body fluids and tissues of benign, inflammatory, or malignant origin. For decades, flow cytometry and immunohistochemistry have been the accustomed methods to quantify T cells. Although these methods are widely used, they depend on the accessibility of T-cell epitopes and therefore require fresh, frozen, or fixated material of a certain quality. Whenever samples are low in quantity or quality, an accurate quantification can be impeded. By shifting the focus from epitopes to DNA, quantification of T cells remains achievable.Mature T cells differ genetically from other cell types as a result of T-cell receptor (TCR) gene rearrangements. This genetic dissimilarity can be exploited to quantify the T-cell fraction in DNA specimens. Conventionally, multiplex PCR and droplet digital PCR (ddPCR), combined with deep-sequencing techniques, can be applied to determine T-cell content. However, these approaches typically target the whole TCR repertoire, thereby supplying additional information about TCR use. Considering this, a simple T-cell quantification, unwantedly, turns into a complex, expensive, and time-consuming procedure. We have developed two generic single duplex ddPCR assays as alternative methods to quantify T cells in a relatively simple, cheap, and fast manner by targeting sequences located between the Dδ2 and Dδ3 genes (TRD locus) and Dβ1 and Jβ1.1 genes (TRB locus). These specific TCR loci become deleted systematically early during lymphoid differentiation and therefore will serve as biomarkers for the quantification of mature T cells. Here, we describe a simple and sensitive ddPCR-based method to quantify T cells relatively fast, accurately and independently of the cellular context.
Collapse
|
41
|
Maruani A. Bispecifics and antibody-drug conjugates: A positive synergy. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:55-61. [PMID: 30553521 DOI: 10.1016/j.ddtec.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Bispecific antibodies (BsAbs) are antibodies with two different paratopes. In the past decade, advances in protein engineering have enabled the development of more than 100 formats of BsAbs. With two BsAbs approved for therapeutic use and more than 60 in clinical trials, this research area has shifted from being effervescent to being a mainstream therapeutic development topic. In parallel, recent progress in protein conjugation and cytotoxicity of small molecule drugs has resulted in a boom in monospecific antibody therapeutics development such as antibody-drug conjugates (ADCs). Recent examples have demonstrated how BsAbs approaches can be used to generate ADCs with better efficacy and safety profile. Rather than examining these two different yet similar areas independently, this minireview will explore the potential synergies that can exist between them.
Collapse
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, London, United Kingdom.
| |
Collapse
|
42
|
Pretargeted Imaging with Gallium-68-Improving the Binding Capability by Increasing the Number of Tetrazine Motifs. Pharmaceuticals (Basel) 2018; 11:ph11040102. [PMID: 30314332 PMCID: PMC6316846 DOI: 10.3390/ph11040102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.
Collapse
|
43
|
Bittner B, Richter W, Schmidt J. Subcutaneous Administration of Biotherapeutics: An Overview of Current Challenges and Opportunities. BioDrugs 2018; 32:425-440. [PMID: 30043229 PMCID: PMC6182494 DOI: 10.1007/s40259-018-0295-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcutaneous delivery of biotherapeutics has become a valuable alternative to intravenous administration across many disease areas. Although the pharmacokinetic profiles of subcutaneous and intravenous formulations differ, subcutaneous administration has proven effective, safe, well-tolerated, generally preferred by patients and healthcare providers and to result in reduced drug delivery-related healthcare costs and resource use. The aim of this article is to discuss the differences between subcutaneous and intravenous dosing from both health-economic and scientific perspectives. The article covers different indications, treatment settings, administration volumes, and injection devices. We focus on biotherapeutics in rheumatoid arthritis (RA), immunoglobulin-replacement therapy in primary immunodeficiency (PI), beta interferons in multiple sclerosis (MS), and monoclonal antibodies (mAbs) in oncology. While most subcutaneous biotherapeutics in RA, PI, and MS are self-administered at home, mAbs for oncology are still only approved for administration in a healthcare setting. Beside concerns around the safety of biotherapeutics in oncology, a key challenge for self-administration in this area is that doses and dosing volumes can be comparatively large; however, this difficulty has recently been overcome to some extent by the development of high-concentration solutions, the use of infusion pumps, and the coadministration of the dispersion enhancer hyaluronidase. Furthermore, given the increasing number of biotherapeutics being considered for combination therapy and the high dosing complexity associated with these, especially when administered intravenously, subcutaneous delivery of fixed-dose combinations might be an alternative that will diminish these burdens on healthcare systems.
Collapse
Affiliation(s)
- Beate Bittner
- Product Optimization, Global Product Strategy, F. Hoffmann-La Roche Ltd, Grenzacher Strasse 124, 4070, Basel, Switzerland.
| | - Wolfgang Richter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacher Strasse 124, 4070, Basel, Switzerland
| | - Johannes Schmidt
- Product Optimization, Global Product Strategy, F. Hoffmann-La Roche Ltd, Grenzacher Strasse 124, 4070, Basel, Switzerland
| |
Collapse
|
44
|
Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018; 24:50. [PMID: 30249178 PMCID: PMC6154901 DOI: 10.1186/s10020-018-0051-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Antibody-based therapy has revitalized the world of cancer therapeutics since rituximab was first approved for the treatment of Non-Hodgkin's Lymphoma. Monoclonal antibodies against cancer antigens have been successful strategies for only a handful of cancer types due to many reasons including lack of antibody specificity and complex nature of tumor milieu which interfere with antibody efficacy. Polyspecific antibodies are promising class of anti-cancer agents which can be directed at multiple tumor antigens to eradicate tumor cells more precisely and effectively. They may overcome some of these limitations and have already changed treatment landscape for some malignancies such as B cell acute lymphoblastic leukemia. Pre-clinical studies and early phase clinical trials have demonstrated that this approach may be an effective strategy even for solid tumors. This review focuses on the development of bispecific and trispecific antibody therapy for the treatment of solid tumor malignancies and highlights the potential they hold for future therapies to come.
Collapse
Affiliation(s)
- Karie Runcie
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Daniel R. Budman
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Veena John
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Nagashree Seetharamu
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| |
Collapse
|
45
|
Development and validation of a (RP)UHPLC-UV-(HESI/Orbitrap)MS method for the identification and quantification of mixtures of intact therapeutical monoclonal antibodies using a monolithic column. J Pharm Biomed Anal 2018; 159:437-448. [DOI: 10.1016/j.jpba.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
|
46
|
Serra López-Matencio JM, Morell Baladrón A, Castañeda S. Interacciones farmacológicas de los anticuerpos monoclonales. Med Clin (Barc) 2018; 151:148-155. [DOI: 10.1016/j.medcli.2017.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
|
47
|
Oncodriver inhibition and CD4 + Th1 cytokines cooperate through Stat1 activation to induce tumor senescence and apoptosis in HER2+ and triple negative breast cancer: implications for combining immune and targeted therapies. Oncotarget 2018; 9:23058-23077. [PMID: 29796172 PMCID: PMC5955413 DOI: 10.18632/oncotarget.25208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/02/2018] [Indexed: 12/19/2022] Open
Abstract
In patients with HER2-expressing breast cancer many develop resistance to HER2 targeted therapies. We show that high and intermediate HER2-expressing cancer cell lines are driven toward apoptosis and tumor senescence when treated with either CD4+ Th1 cells, or Th1 cytokines TNF-α and IFN-γ, in a dose dependent manner. Depletion of HER2 activity by either siRNA or trastuzumab and pertuzumab, and subsequent treatment with either anti-HER2 Th1 cells or TNF-α and IFN-γ resulted in synergistic increased tumor senescence and apoptosis in cells both sensitive and cells resistant to trastuzumab which was inhibited by neutralizing anti-TNF-α and IFN-γ. Th1 cytokines induced minimal senescence or apoptosis in triple negative breast cancer cells (TNBC); however, inhibition of EGFR in combination with Th1 cytokines sensitized those cells causing both senescence and apoptosis. TNF-α and IFN-γ led to increased Stat1 phosphorylation through serine and tyrosine sites and a compensatory reduction in Stat3 activation. Single agent IFN-γ enhanced Stat1 phosphorylation on tyrosine 701 and similar effects were observed in combination with TNF-α and EGFR inhibition. These results demonstrate Th1 cytokines and anti-oncodriver blockade cooperate in causing tumor senescence and apoptosis in TNBC and HER2-expressing breast cancer, suggesting these combinations could be explored as non-cross-reactive therapy preventing recurrence in breast cancer.
Collapse
|
48
|
Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018; 9:1773-1781. [PMID: 29805703 PMCID: PMC5968765 DOI: 10.7150/jca.24577] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
In the past decades, our knowledge about the relationship between cancer and the immune system has increased considerably. Recent years' success of cancer immunotherapy including monoclonal antibodies (mAbs), cancer vaccines, adoptive cancer therapy and the immune checkpoint therapy has revolutionized traditional cancer treatment. However, challenges still exist in this field. Personalized combination therapies via new techniques will be the next promising strategies for the future cancer treatment direction.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| | - Jibei Chen
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| |
Collapse
|
49
|
|
50
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|