1
|
Poliaková Turan M, Riedo R, Medo M, Pozzato C, Friese-Hamim M, Koch JP, Coggins SA, Li Q, Kim B, Albers J, Aebersold DM, Zamboni N, Zimmer Y, Medová M. E2F1-Associated Purine Synthesis Pathway Is a Major Component of the MET-DNA Damage Response Network. CANCER RESEARCH COMMUNICATIONS 2024; 4:1863-1880. [PMID: 38957115 PMCID: PMC11288008 DOI: 10.1158/2767-9764.crc-23-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways in which interruption compromises proper resolution of DNA damage. Discovery metabolomics combined with transcriptomics identified changes in pathways relevant to DNA repair following MET inhibition (METi). METi by tepotinib was associated with the formation of γH2AX foci and with significant alterations in major metabolic circuits such as glycolysis, gluconeogenesis, and purine, pyrimidine, amino acid, and lipid metabolism. 5'-Phosphoribosyl-N-formylglycinamide, a de novo purine synthesis pathway metabolite, was consistently decreased in in vitro and in vivo MET-dependent models, and METi-related depletion of dNTPs was observed. METi instigated the downregulation of critical purine synthesis enzymes including phosphoribosylglycinamide formyltransferase, which catalyzes 5'-phosphoribosyl-N-formylglycinamide synthesis. Genes encoding these enzymes are regulated through E2F1, whose levels decrease upon METi in MET-driven cells and xenografts. Transient E2F1 overexpression prevented dNTP depletion and the concomitant METi-associated DNA damage in MET-driven cells. We conclude that DNA damage following METi results from dNTP reduction via downregulation of E2F1 and a consequent decline of de novo purine synthesis. SIGNIFICANCE Maintenance of genome stability prevents disease and affiliates with growth factor receptor tyrosine kinases. We identified de novo purine synthesis as a pathway in which key enzymatic players are regulated through MET receptor and whose depletion via MET targeting explains MET inhibition-associated formation of DNA double-strand breaks. The mechanistic importance of MET inhibition-dependent E2F1 downregulation for interference with DNA integrity has translational implications for MET-targeting-based treatment of malignancies.
Collapse
Affiliation(s)
- Michaela Poliaková Turan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Rahel Riedo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Matúš Medo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Chiara Pozzato
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Manja Friese-Hamim
- Corporate Animal Using Vendor and Vivarium Governance (SQ-AV), Corporate Sustainability, Quality, Trade Compliance (SQ), Animal Affairs (SQ-A), The Healthcare Business of Merck KGaA, Darmstadt, Germany.
| | - Jonas P. Koch
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Si’Ana A. Coggins
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| | - Qun Li
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea.
| | - Joachim Albers
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany.
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
- PHRT Swiss Multi-Omics Center, Zurich, Switzerland.
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Daoui O, Nour H, Abchir O, Elkhattabi S, Bakhouch M, Chtita S. A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:7768-7785. [PMID: 36120976 DOI: 10.1080/07391102.2022.2124456] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Small molecules such as 4-phenoxypyridine derivatives have remarkable inhibitory activity against c-Met enzymatic activity and proliferation of cancer cell lines. Since there is a relationship between structure and biological activity of these molecules, these little compounds may have great potential for clinical pharmaceutical use against various types of cancer caused by c-Met activity. The purpose of this study was to remodel the structures of 4-phenoxypyridine derivatives to achieve strong inhibitory activity against c-Met and provide favorable pharmacokinetic properties for drug design and discovery. Therefore, this paper describes the structure-activity relationship and the rationalization of appropriate pharmacophore sites to improve the biological activity of the investigated molecules, based on bioinformatics techniques represented by a computer-aided drug design approach. Accordingly, robust and reliable 3D-QSAR models were developed based on CoMFA and CoMSIA techniques. As a result, 46 lead molecules were designed and their biological and pharmacokinetic activities were predicted in silico. Screening filters by 3D-QSAR, Molecular Docking, drug-like and ADME-Tox identified the computer-designed compounds P54 and P55 as the best candidates to achieve high inhibition of c-Met enzymatic activity compared to the synthesized template compound T14. Finally, through molecular dynamics simulations, the structural properties and dynamics of c-Met free and complex (PDB code: 3LQ8) in the presence of 4-phenoxypyridine-derived compounds in an aqueous environment are discussed. Overall, the rectosynthesis of the designed drug inhibitors (P54 and P55) and their in vitro and in vivo bioactivity evaluation may be attractive for design and discovery of novel drug effective to inhibit c-Met enzymatic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
4
|
Hsu R, Benjamin DJ, Nagasaka M. The Development and Role of Capmatinib in the Treatment of MET-Dysregulated Non-Small Cell Lung Cancer-A Narrative Review. Cancers (Basel) 2023; 15:3561. [PMID: 37509224 PMCID: PMC10377299 DOI: 10.3390/cancers15143561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death, but over the past decade, there has been tremendous progress in the field with new targeted therapies. The mesenchymal-epithelial transition factor (MET) proto-oncogene has been implicated in multiple solid tumors, including NSCLC, and dysregulation in NSCLC from MET can present most notably as MET exon 14 skipping mutation and amplification. From this, MET tyrosine kinase inhibitors (TKIs) have been developed to treat this dysregulation despite challenges with efficacy and reliable biomarkers. Capmatinib is a Type Ib MET TKI first discovered in 2011 and was FDA approved in August 2022 for advanced NSCLC with MET exon 14 skipping mutation. In this narrative review, we discuss preclinical and early-phase studies that led to the GEOMETRY mono-1 study, which showed beneficial efficacy in MET exon 14 skipping mutations, leading to FDA approval of capmatinib along with Foundation One CDx assay as its companion diagnostic assay. Current and future directions of capmatinib are focused on improving the efficacy, overcoming the resistance of capmatinib, and finding approaches for new indications of capmatinib such as acquired MET amplification from epidermal growth factor receptor (EGFR) TKI resistance. Clinical trials now involve combination therapy with capmatinib, including amivantamab, trametinib, and immunotherapy. Furthermore, new drug agents, particularly antibody-drug conjugates, are being developed to help treat patients with acquired resistance from capmatinib and other TKIs.
Collapse
Affiliation(s)
- Robert Hsu
- Division of Medical Oncology, Department of Internal Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Misako Nagasaka
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA 92868, USA
| |
Collapse
|
5
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
6
|
Multiomics Study of a Novel Naturally Derived Small Molecule, NSC772864, as a Potential Inhibitor of Proto-Oncogenes Regulating Cell Cycle Progression in Colorectal Cancer. Cells 2023; 12:cells12020340. [PMID: 36672275 PMCID: PMC9856482 DOI: 10.3390/cells12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors, and it contributes to high numbers of deaths globally. Although advances in understanding CRC molecular mechanisms have shed significant light on its pathogenicity, current treatment options, including combined chemotherapy and molecular-targeted agents, are still limited due to resistance, with almost 25% of patients developing distant metastasis. Therefore, identifying novel biomarkers for early diagnosis is crucial, as they will also influence strategies for new targeted therapies. The proto-oncogene, c-Met, a tyrosine kinase that promotes cell proliferation, motility, and invasion; c-MYC, a transcription factor associated with the modulation of the cell cycle, proliferation, apoptosis; and cyclin D1 (CCND1), an essential regulatory protein in the cell cycle, all play crucial roles in cancer progression. In the present study, we explored computational simulations through bioinformatics analysis and identified the overexpression of c-Met/GSK3β/MYC/CCND1 oncogenic signatures that were associated with cancer progression, drug resistance, metastasis, and poor clinical outcomes in CRC. We further demonstrated the anticancer activities of our newly synthesized quinoline-derived compound, NSC772864, against panels of the National Cancer Institute's human CRC cell lines. The compound exhibited cytotoxic activities against various CRC cell lines. Using target prediction tools, we found that c-Met/GSK3β/MYC/CCND1 were target genes for the NSC772864 compound. Subsequently, we performed in silico molecular docking to investigate protein-ligand interactions and discovered that NSC772864 exhibited higher binding affinities with these oncogenes compared to FDA-approved drugs. These findings strongly suggest that NSC772864 is a novel and potential antiCRC agent.
Collapse
|
7
|
Xu L, Wang F, Luo F. MET-targeted therapies for the treatment of non-small-cell lung cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1013299. [PMID: 36387098 PMCID: PMC9646943 DOI: 10.3389/fonc.2022.1013299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Dysregulation of the mesenchymal epithelial transition (MET) pathway contributes to poor clinical outcomes in patients with non-small cell lung cancer (NSCLC). Numerous clinical trials are currently investigating several therapies based on modulation of the MET pathway. OBJECTIVES This study aimed to systematically evaluate the activity and safety of MET inhibitors in patients with NSCLC. METHODS We searched PubMed, Embase, and the Cochrane Library from inception to June 02, 2022. The objective response rate (ORR) and disease control rate (DCR) were extracted as the main outcomes and pooled using the weighted mean proportion with fixed- or random-effects models in cases of significant heterogeneity (I 2>50%). Safety analysis was performed based on adverse events reported in all studies. RESULTS Eleven studies (882 patients) were included in the meta-analysis. The pooled ORR was 28.1% (95% confidence interval [CI], 0.223-0.354), while the pooled DCR was 69.1% (95% CI, 0.631-0.756). ORRs were higher for tepotinib (44.7% [95% CI, 0.365-0.530]) and savolitinib (42.9% [95% CI, 0.311-0.553]) than for other types of MET inhibitors. Patients with NSCLC with exon 14 skipping exhibited higher ORRs (39.3% (95% CI, 0.296-0.522)) and DCRs (77.8% (95% CI, 0.714-0.847)) than those with MET protein overexpression or amplification. Intracranial response rate and intracranial disease control rates were 40.1% (95% CI, 0.289-0.556) and 95.4% (95% CI, 0.892-0.100), respectively. Adverse events were mild (grade 1 to 2) in 87.2% of patients. Common adverse events above grade 3 included lower extremity edema (3.5% [95% CI, 0.027-0.044]), alanine aminotransferase (ALT) elevation (2.4% [95% CI, 0.014-0.033]), and lipase elevation (2.2% [95% CI, 0.016-0.031]). CONCLUSION MET inhibitors, which exhibited a satisfactory safety profile in the current study, may become a new standard of care for addressing MET dysregulation in patients with advanced or metastatic NSCLC, and even in those with brain metastases, particularly tepotinib, savolitinib and capmatinib. Further randomized trials are required to establish standard predictive biomarkers for MET therapies and to compare the effects of different MET inhibitors in NSCLC with MET dysregulation.
Collapse
Affiliation(s)
- Linrui Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Wang N, Zhu Y, Wu Y, Huang B, Wu J, Zhang R, Fan J, Nie X. MET overexpression in EGFR L858R mutant treatment-naïve advanced lung adenocarcinoma correlated with poor prognosis: a real-world retrospective study. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04225-5. [PMID: 35904603 DOI: 10.1007/s00432-022-04225-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Mesenchymal epithelial transition (MET) overexpression has been reported in approximately 50-60% of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers. However, the prognostic significance of MET overexpression has not been established in advanced lung adenocarcinoma (ADC) patients with EGFR-sensitive mutations. METHODS A retrospective study was performed on a total of 406 treatment-naïve advanced ADC patients with EGFR mutation detection and MET expression information. EGFR mutations were detected by next-generation sequencing or amplification refractory mutation system-polymerase chain reaction. Immuno-histochemistry staining of MET expression was evaluated by H-score and overexpression was defined as an H-score ≥ 200. Overall survival (OS) and progression-free survival (PFS) were analyzed according to MET expression. RESULTS Among the 406 patients, 208 patients had EGFR mutations, including 102 exon 19_del mutations, 94 L858R mutations and 12 other types of mutations. Of 110 patients with concomitant EGFR mutations and MET overexpression, 61 (59.8%) patients had 19_del mutations, 44 (46.8%) patients had L858R mutations and five (41.7%) patients had others. Patients with MET overexpression had a markedly shorter PFS and OS than patients with MET H-score < 200 in the EGFR L858R mutation subgroup (median PFS: 12 versus 26 months, p = 0.001; median OS: 24 versus 32 months, p = 0.038), whereas no significant difference was observed in 19_del mutation subgroup. Multivariate Cox analysis showed that MET overexpression was an independent poor prognostic factor for PFS and OS in patients with the L858R mutations (HR = 3.064, 95% CI 1.705-5.507, p < 0.001; HR = 2.043, 95% CI 1.000-4.172; p = 0.049), rather than 19_del. CONCLUSIONS MET overexpression is a poor prognostic factor for advanced ADC patients with the EGFR L858R mutation.
Collapse
Affiliation(s)
- Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yili Zhu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ying Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
Ai X, Yu Y, Zhao J, Sheng W, Bai J, Fan Z, Liu X, Ji W, Chen R, Lu S. Comprehensive analysis of MET mutations in NSCLC patients in a real-world setting. Ther Adv Med Oncol 2022; 14:17588359221112474. [PMID: 35860830 PMCID: PMC9290171 DOI: 10.1177/17588359221112474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Aberrant mesenchymal–epithelial transition/hepatocyte growth factor (MET/HGF) regulation presented in a wide variety of human cancers. MET exon 14 skipping, copy number gain (CNG), and kinase domain mutations/arrangements were associated with increased MET activity, and considered to be oncogenic drivers of non-small cell lung cancers (NSCLCs). Methods: We retrospectively analyzed 564 patients with MET alterations. MET alterations were classified into structural mutations or small mutations. MET CNG, exon 14 skipping, gain of function (GOF) mutations, and kinase domain rearrangement were defined as actionable mutations. Results: Six hundred thirty-two MET mutations were identified including 199 CNG, 117 exon 14 skipping, 12 GOF mutations, and 2 actionable fusions. Higher percentage of MET structural alterations (CNG + fusion) were detected in advanced NSCLC patients. Moreover, MET CNG was enriched while exon 14 skipping was rare in epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI)-treated advanced NSCLC patients. Ten of the 12 MET GOF mutations were also in EGFR-TKI-treated patients. Fifteen (68.1%) of the 22 patients treated with crizotinib or savolitinib had a partial response. Interestingly, one patient had a great response to savolitinib with a novel MET exon 14 skipping mutation identified after failure of immune-checkpoint inhibitor. Conclusions: Half of the MET alterations were actionable mutations. MET CNG, exon 14 skipping and GOF mutations had different distribution in different clinical scenario but all defined a molecular subgroup of NSCLCs for which MET inhibition was active.
Collapse
Affiliation(s)
- Xinghao Ai
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wang Sheng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zaiwen Fan
- Department of Medical Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Xuemei Liu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Chen
- Geneplus-Beijing, Floor 9, Building 6, Medical Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, Huaihai West Road, Shanghai 200032, China
| |
Collapse
|
10
|
Wang Z, Liu Y, Zhan X, Wang X, Zhang C, Qin L, Liu L, Qin S. A novel prognostic signature of metastasis-associated genes and personalized therapeutic strategy for lung adenocarcinoma patients. Aging (Albany NY) 2022; 14:5571-5589. [PMID: 35830566 PMCID: PMC9320549 DOI: 10.18632/aging.204169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/18/2022] [Indexed: 01/01/2023]
Abstract
Lung adenocarcinoma (LUAD) is a highly invasive and metastatic malignant tumor with high morbidity and mortality. This study aimed to construct a prognostic signature for LUAD patients based on metastasis-associated genes (MAGs). RNA expression profiles were downloaded from the Cancer Genome Atlas (TCGA) database. RRA method was applied to identify differentially expressed MAGs. A total of 192 significantly robust MAGs were determined among seven GEO datasets. MAGs were initially selected through the Lasso Cox regression analysis and 6 MAGs were included to construct a prognostic signature model. Transcriptome profile, patient prognosis, correlation between the risk score and clinicopathological features, immune cell infiltration characteristics, immunotherapy sensitivity and chemotherapy sensitivity differed between low- and high-risk groups after grouping according to median risk score. The reliability and applicability of the signature were further validated in the GSE31210, GSE50081 and GSE68465 cohort. CMap predicted 62 small molecule drugs on the base of the prognostic MAGs. Targeted drug staurosporine had hydrogen bonding with Gln-172 of SLC2A1, which is one of MAGs. Staurosporine could inhibit cell migration in A549 and H1299. We further verified mRNA and protein expression of 6 MAGs in A549 and H1299. The signature can serve as a promising prognostic tool and may provide a novel personalized therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Zhihao Wang
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Yusi Liu
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Liu J, Liu F, Li Z, Li C, Wu S, Shen J, Wang H, Du S, Wei H, Hou Y, Ding S, Chen Y. Novel 4-phenoxypyridine derivatives bearing imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide moieties: Design, synthesis and biological evaluation as potent antitumor agents. Bioorg Chem 2022; 120:105629. [DOI: 10.1016/j.bioorg.2022.105629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
|
12
|
Analysis of Copy Number Variations in Solid Tumors Using a Next Generation Sequencing Custom Panel. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatic copy number variations (CNV; i.e., amplifications and deletions) have been implicated in the origin and development of multiple cancers and some of these aberrations are designated targets for therapies. Although FISH is still considered the gold standard for CNV detection, the increasing number of potentially druggable amplifications to be assessed makes a gene-by-gene approach time- and tissue-consuming. Here we investigated the potential of next generation sequencing (NGS) custom panels to simultaneously determine CNVs across FFPE solid tumor samples. DNA was purified from cell lines and FFPE samples and analyzed by NGS sequencing using a 20-gene custom panel in the GeneReader Platform®. CNVs were identified using an in-house algorithm based on the UMI read coverage. Retrospective validation of in-house algorithm to identify CNVs showed 97.1% concordance rate with the NGS custom panel. The prospective analysis was performed in a cohort of 243 FFPE samples from patients arriving at our hospital, which included 74 NSCLC tumors, 148 CRC tumors, and 21 other tumors. Of them, 33% presented CNVs by NGS and in 14 cases (5.9%) the CNV was the only alteration detected. We have identified CNV alterations in about one-third of our cohort, including FGFR1, CDK6, CDK4, EGFR, MET, ERBB2, BRAF, or KRAS. Our work highlights the need to include CNV testing as a part of routine NGS analysis in order to uncover clinically relevant gene amplifications that can guide the selection of therapies.
Collapse
|
13
|
Aksorn N, Losuwannarak N, Tungsukruthai S, Roytrakul S, Chanvorachote P. Analysis of the Protein-Protein Interaction Network Identifying c-Met as a Target of Gigantol in the Suppression of Lung Cancer Metastasis. Cancer Genomics Proteomics 2021; 18:261-272. [PMID: 33893079 DOI: 10.21873/cgp.20257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM c-Met (mesenchymal-epithelial transition factor) facilitates cancer progression and is recognized as a promising drug target. The molecular target of gigantol from Dendrobium draconis in suppressing cancer metastasis is largely unknown. MATERIALS AND METHODS Proteins affected by gigantol treatment were subjected to proteomic and bioinformatic analysis. Protein-Protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database and hub gene were used to enrich the dominant pathways. Western blot analysis and immunofluorescence were used to validate the effect of gigantol on the target protein and signaling. RESULTS Gigantol down-regulates 41 adhesion proteins and 39-migratory proteins, while it up-regulates 30 adhesion-related proteins and 22 proteins controlling cell migration. The key components of our constructed PPI network comprised 41 proteins of cell adhesion enriched in 40 nodes with 25 edges, 39 proteins of cell migration enriched in 39 nodes with 76 edges in down-regulated proteins, 30 proteins of cell adhesion enriched in 30 nodes with 21 edges, and 22 proteins of cell migration enriched in 22 nodes with 22 edges in up-regulated protein. c-Met was identified as a central protein of the PPI network in the largest degree. KEGG mapper further suggested that c-Met, PI3K, and AKT were the regulatory proteins affected by gigantol. To confirm, the effects of gigantol on c-Met, the p-PI3K, PI3K, p-AKT, and AKT proteins were investigated by western blotting and the results showed a consistent effect of gigantol in the suppression of the c-Met/PI3K/AKT signal. Next, immunofluorescence showed a dramatic decrease in c-Met, PI3K and AKT activation in response to gigantol. CONCLUSION c-Met is an important target of gigantol treatment in lung cancer cells. Gigantol suppresses metastasis-related cell motility through decreasing c-Met resulting in PI3K/AKT signaling disruption.
Collapse
Affiliation(s)
- Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Nattanan Losuwannarak
- Department of Pharmacology and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, Thailand
| | - Sucharat Tungsukruthai
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Pithi Chanvorachote
- Cell-based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; .,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Yao HP, Tong XM, Wang MH. Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Ther Adv Med Oncol 2021; 13:17588359211006957. [PMID: 33868463 PMCID: PMC8020248 DOI: 10.1177/17588359211006957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and/or activation of the MET receptor tyrosine kinase is
characterized by genomic recombination, gene amplification, activating mutation,
alternative exon-splicing, increased transcription, and their different
combinations. These dysregulations serve as oncogenic determinants contributing
to cancerous initiation, progression, malignancy, and stemness. Moreover,
integration of the MET pathway into the cellular signaling network as an
addiction mechanism for survival has made this receptor an attractive
pharmaceutical target for oncological intervention. For the last 20 years,
MET-targeting small-molecule kinase inhibitors (SMKIs), conventional therapeutic
monoclonal antibodies (TMABs), and antibody-based biotherapeutics such as
bispecific antibodies, antibody–drug conjugates (ADC), and dual-targeting ADCs
have been under intensive investigation. Outcomes from preclinical studies and
clinical trials are mixed with certain successes but also various setbacks. Due
to the complex nature of MET dysregulation with multiple facets and underlying
mechanisms, mechanism-based validation of MET-targeting therapeutics is crucial
for the selection and validation of lead candidates for clinical trials. In this
review, we discuss the importance of various types of mechanism-based
pharmaceutical models in evaluation of different types of MET-targeting
therapeutics. The advantages and disadvantages of these mechanism-based
strategies for SMKIs, conventional TMABs, and antibody-based biotherapeutics are
analyzed. The demand for establishing new strategies suitable for validating
novel biotherapeutics is also discussed. The information summarized should
provide a pharmaceutical guideline for selection and validation of MET-targeting
therapeutics for clinical application in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Liu Y, Cai Y, Chang Y. Dual inhibition of RNAi therapeutic miR-26a-5p targeting cMet and immunotherapy against EGFR in endometrial cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:5. [PMID: 33553298 PMCID: PMC7859788 DOI: 10.21037/atm-20-3166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background Precise prediction of drug combination targeting tumor cells effectively is a crucial challenge for tumor therapy, especially for endometrial cancer (EC). Considering the resistance, crosstalk that occurs between the receptor tyrosine kinase mesenchymal-epithelial transition factor (cMet) and epidermal growth factor receptor (EGFR), and their indispensable influence on the occurrence of EC, this study aimed to explore a novel therapeutic approach for EC treatment through blocking cMet and EGFR simultaneously. Methods In the present study, the expression of miR-26a-5p in EC cell lines was detected using quantitative real-time polymerase chain reaction assay. The potential role of miR-26a-5p in the development of EC was examined using cell counting kit assay, 5-ethynyl-2’- deoxyuridine staining, wound healing assay, and cell apoptosis staining assay. Subsequently, the effect of upregulated miR-26a-5p in vivo was confirmed on a xenograft model. Luciferase reporter assay and Western blot analysis were performed to verify the relation between miR-26a-5p and cMet. Furthermore, the dual therapeutic effect of miR-26a-5p and EGFR monoclonal antibody cetuximab was confirmed in vivo and in vitro. Results The results indicated that miR-26a-5p expression significantly reduced in EC cell lines compared with the normal endometrial cell line. Furthermore, the overexpression of miR-26a-5p inhibited the progression of EC, including cell migration, cell proliferation, and cell apoptosis in vivo and in vitro. Subsequently, mir-26a-5p regulated the expression of cMet and the downstream the hepatocyte growth factor (HGF)/cMet pathway, thus exerting an inhibitory effect on EC cells. In addition, the study also demonstrated that the upregulation of miR-26a-5p could significantly enhance the inhibitory effect of cetuximab compared with the use of cetuximab alone in vivo and in vitro. Conclusions RNAi therapeutic miR-26a-5p suppressed the progression of EC through regulating the cMet/HGF pathway. The dual therapy using RNA interference and neutralizing antibody simultaneously blocked tumor targets, including cMet and EGFR, thus providing a novel approach for overcoming the resistance to the inhibitors against a single target in EC treatment.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Sui JSY, Finn SP, Gray SG. Detection of MET Exon 14 Skipping Alterations in Lung Cancer Clinical Samples Using a PCR-Based Approach. Methods Mol Biol 2021; 2279:145-155. [PMID: 33683691 DOI: 10.1007/978-1-0716-1278-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The receptor tyrosine kinase (RTK) c-MET plays important roles in cancer, yet despite being frequently overexpressed, clinical responses to targeting this receptor have been limited in the clinical setting. A singular significant challenge has been the accurate identification of biomarkers for the selection of responsive patients. However, recently mutations which result in the loss of exon 14 (called METex14 skipping) have emerged as novel biomarkers in non-small cell lung carcinomas (NSCLC) to predict for responsiveness to targeted therapy with c-MET inhibitors. Currently, the diverse genomic alterations responsible for METex14 skipping pose a challenge for routine clinical diagnostic testing. Next generation sequencing (NGS) is the current gold standard for identifying the diverse mutations associated with METex14, but the cost for such a procedure remains to some degree prohibitive as often NGS is requested on a case-by-case basis, and many hospitals may not even have the capacity or resources to conduct NGS.However, PCR-based approaches to detect METex14 have been developed which can be conducted in most routine hospital laboratories and may therefore allow a cost-effective approach to pre-screen patients that may respond to c-MET inhibitors prior to conducting NGS, or until all patients will have NGS conducted as routine practise. In this chapter, we describe one such PCR-based approach for screening samples for the detection of METex14 in NSCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Histopathology, Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland.
| |
Collapse
|
17
|
Pudelko L, Jaehrling F, Reusch C, Vitri S, Stroh C, Linde N, Sanderson MP, Musch D, Lebrun CJ, Keil M, Esdar C, Blaukat A, Rosell R, Schumacher KM, Karachaliou N. SHP2 Inhibition Influences Therapeutic Response to Tepotinib in Tumors with MET Alterations. iScience 2020; 23:101832. [PMID: 33305187 PMCID: PMC7718487 DOI: 10.1016/j.isci.2020.101832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tepotinib is an oral MET inhibitor approved for metastatic non-small cell lung cancer (NSCLC) harboring MET exon 14 (METex14) skipping mutations. Examining treatment-naive or tepotinib-resistant cells with MET amplification or METex14 skipping mutations identifies other receptor tyrosine kinases (RTKs) that co-exist in cells prior to tepotinib exposure and become more prominent upon tepotinib resistance. In a small cohort of patients with lung cancer with MET genetic alterations treated with tepotinib, gene copy number gains of other RTKs were found at baseline and affected treatment outcome. An Src homology 2 domain-containing phosphatase 2 (SHP2) inhibitor delayed the emergence of tepotinib resistance and synergized with tepotinib in treatment-naive and tepotinib-resistant cells as well as in xenograft models. Alternative signaling pathways potentially diminish the effect of tepotinib monotherapy, and the combination of tepotinib with an SHP2 inhibitor enables the control of tumor growth in cells with MET genetic alterations.
Collapse
Affiliation(s)
- Linda Pudelko
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Frank Jaehrling
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christof Reusch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Sanziago Vitri
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
| | - Christopher Stroh
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Nina Linde
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Michael P. Sanderson
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Doreen Musch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Marina Keil
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christina Esdar
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Rafael Rosell
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
- Germans Trias i Pujol Research Institute and Hospital (IGTP), Molecular and Cellular Oncology Laboratory, Badalona 08916, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, 08028 Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | | | - Niki Karachaliou
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
- Global Clinical Development, Merck KGaA, Darmstadt 64293, Germany
| |
Collapse
|
18
|
c-Met/MAPK pathway promotes the malignant progression of residual hepatocellular carcinoma cells after insufficient radiofrequency ablation. Med Oncol 2020; 37:117. [PMID: 33215351 DOI: 10.1007/s12032-020-01444-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Radiofrequency ablation (RFA) is popularly used in the treatment of hepatocellular carcinoma (HCC). However, the accelerated malignant progression of residual HCC cells after RFA is the main obstacle for the application of this technology in HCC treatment. In the present study, HepG2 cells, an established human HCC cell line, experienced repeatedly with heat treatment, survived cells, HepG2-H cells, were used to simulate residual HCC cells after RFA. The abilities of proliferation, colony formation, and migration were compared between HepG2 and HepG2-H cells. Then, RNA sequencing was used to explore the difference in genes expression between two groups of cells. Subsequently, the level of c-Met, one of membranous receptors of MAPK signal pathway, was measured by RT-qPCR and western blot; the effect of c-Met inhibition on the malignant progression of HepG2-H cells was evaluated. The results showed that HepG2-H cells exhibited higher abilities in the proliferation, colony formation, and migration than that of HepG2 cells. Moreover, differentially expressed genes between two groups of cells were prominently enriched in MAPK signal pathway. The level of c-Met in HepG2-H cells was significantly higher than that in HepG2 cells, and the inhibition in the activity of c-Met could repress the malignant behaviors of HepG2-H cells. These results indicated that the accelerated malignant progression of residual HCC cells after RFA can be partly attributed to the overexpression of c-Met and the activation of MAPK signal pathway. Therefore, we proposed that RFA followed by c-Met inhibitor intake maybe is a better treatment protocol for HCC.
Collapse
|
19
|
Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg Chem 2020; 104:104356. [PMID: 33142417 DOI: 10.1016/j.bioorg.2020.104356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
A series of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives (10a-10x) were designed, synthesized, and evaluated for their in vitro inhibitory activities against c-Met kinase and antiproliferative activities against the SH-SY5Y, MDA-MB-231, A549, and HepG2 cell lines. Most of the compounds remarkably inhibited c-Met kinase and showed moderate to good cytotoxicity and selectivity toward the four cancer cell lines. Among them, compounds 10b and 10f were the two most potent selective c-Met inhibitors with half-maximal inhibitory concentration (IC50) values of 5.17 ± 0.48 nM and 5.62 ± 0.78 nM, respectively, and suppression abilities comparable with the positive control cabozantinib. Cell proliferation assay further demonstrated that the two most promising compounds 10a and 10b also showed good cytotoxicity and selectivity toward MDA-MB-231 cells, with IC50 values of 26.67 ± 2.56 μM and 26.83 ± 2.41 μM, respectively. Compounds 10f and 10g showed cytotoxicity and selectivity toward A549 cells, with IC50 values of 20.20 ± 2.04 μM and 21.65 ± 1.58 μM, respectively. All antiproliferative activities were within the range of those of cabozantinib. Notably, these compounds presented relatively low hepatotoxicity compared with reference drugs. Moreover, the preliminary structure-activity relationship and docking studies revealed that replacement of a nitrogen-containing heterocycle on the R2 (block A) group might improve the c-Met kinase inhibitory and antiproliferative effects in MDA-MB-231 cells, whereas displacement by a substituted benzene ring, especially for the p-fluorophenyl or 4-fluoro-3-methoxyphenyl moiety, on the R2 group enhanced cytotoxicity toward A549 cells. Together, these results suggest that 10b and 10f are promising compounds and provide a basis for their development as new antitumor agents.
Collapse
|
20
|
Shitara K, Yamazaki K, Tsushima T, Naito T, Matsubara N, Watanabe M, Sarholz B, Johne A, Doi T. Phase I trial of the MET inhibitor tepotinib in Japanese patients with solid tumors. Jpn J Clin Oncol 2020; 50:859-866. [PMID: 32328660 PMCID: PMC7401714 DOI: 10.1093/jjco/hyaa042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Tepotinib (MSC2156119J) is an oral, potent and highly selective small molecule mesenchymal-epithelial transition factor (MET) inhibitor for which the recommended Phase II dose of 500 mg once daily has been defined, based on the first-in-man trial conducted in the USA and Europe. We carried out a multicenter Phase I trial with a classic `3 + 3' design to determine the recommended Phase II dose in Japanese patients with solid tumors (NCT01832506). METHODS Patients aged ≥20 years with advanced solid tumors (refractory to standard therapy or for whom no effective standard therapy was available) received tepotinib at 215, 300 or 500 mg once daily in a 21-day cycle. Occurrence of dose-limiting toxicities during cycle 1 was used to determine the maximum tolerated dose. Efficacy, safety and pharmacokinetics were also evaluated to support the dose assessment. RESULTS Twelve patients were treated. Tepotinib was generally well tolerated with no observed dose-limiting toxicities; treatment-related adverse events were mainly grades 1-2. The tolerability profile of tepotinib was similar to that observed in non-Japanese populations. Pharmacokinetics in Japanese and Western patients was comparable. One patient with gastric cancer and one patient with urachal cancer had stable disease of ≥12 weeks in duration. The observed safety profile and pharmacokinetics are comparable with those in patients from the USA and Europe, and the recommended Phase II dose of tepotinib in Japanese patients was confirmed as 500 mg once daily. CONCLUSIONS These results, including initial signals of antitumor activity, support further development of tepotinib in Japanese patients with cancer.
Collapse
Affiliation(s)
- Kohei Shitara
- Division of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takahiro Tsushima
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Nobuaki Matsubara
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | | | | | | | - Toshihiko Doi
- Division of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
21
|
Zhao C, Guo R, Guan F, Ma S, Li M, Wu J, Liu X, Li H, Yang B. MicroRNA-128-3p Enhances the Chemosensitivity of Temozolomide in Glioblastoma by Targeting c-Met and EMT. Sci Rep 2020; 10:9471. [PMID: 32528036 PMCID: PMC7289811 DOI: 10.1038/s41598-020-65331-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/22/2019] [Indexed: 11/15/2022] Open
Abstract
Temozolomide is a first line anti-tumor drug used for the treatment of patients with Glioblastoma multiforme (GBM). However, the drug resistance to temozolomide limits its clinical application. Therefore, novel strategies to overcome chemoresistance are desperately needed for improved treatment of human GBM. Recent studies have demonstrated that miRNAs are closely related to resistance to cancer chemotherapy. This study aimed to further validate the biological role of miR-128-3p and to investigate whether miR-128-3p can enhance the chemosensitivity of glioblastoma to temozolomide (TMZ) and the underlying mechanisms. The effects of miR-128-3p and TMZ on the proliferation of glioblastoma cells were investigated by cell counting kit-8 (cck8). Transwell and intracerebral invasion assays were applied to determine the effects of the combination of miR-128-3p and TMZ on the invasion and migration of glioblastoma in vitro and in vivo. Flow cytometry was used to detect apoptosis in each group, and immunofluorescence was used to determine the expression levels of EMT-related proteins. RT-PCR and Western-blot were applied to detect EMT-transformed proteins (c-Met, PDGFRα, Notch1, and Slug) and EMT phenotype-associated proteins (Vim, CD44, and E-cadherin) at both mRNA and protein levels. Based on the microRNA.org database, we predicted the target genes of miR-128-3p. The target-relationship between miR-128-3p and c-Met and PDGFRα was verified by dual luciferase reporter gene. The tumor volume, weight and the expression levels of the proteins described above were measured in subcutaneously transplanted tumor model in nude mice. We found that the expression of miR-128-3p was down-regulated in glioblastoma tissue samples and cell lines. miR-128-3p suppressed the proliferation, migration, and invasion of GBM both in vitro and in vivo; miR-128-3p enhanced the therapeutic effect of TMZ via inhibition of proliferation, invasion and migration of glioblastoma cells and induction of apoptosis. Overexpression of miR-128-3p down-regulated the expression levels of EMT-transformed proteins (c-Met, PDGFRα, Notch1 and Slug) to enhance the effect of TMZ. In addition, we found that miR-128-3p targeted and bound c-Met. More importantly, the upregulation of c‐Met significantly prompted U87 and U251 cell proliferation. This effect could be abolished when c‐Met was silenced. The investigation in tumor bearing nude mice showed that miR-128-3p in combination with TMZ reduced tumor volume and the invasion extent, and increased the sensitivity of glioblastoma to TMZ. miR-128-3p is capable of enhancing the sensitivity of glioblastoma to TMZ through regulating c-Met/EMT.
Collapse
Affiliation(s)
- Chengbin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruiming Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fangxia Guan
- School of Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shanshan Ma
- School of Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junru Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
22
|
Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Front Cell Dev Biol 2020; 8:145. [PMID: 32219093 PMCID: PMC7078111 DOI: 10.3389/fcell.2020.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Hong Zhan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
New Paradigms to Assess Consequences of Long-Term, Low-Dose Curcumin Exposure in Lung Cancer Cells. Molecules 2020; 25:molecules25020366. [PMID: 31963196 PMCID: PMC7024150 DOI: 10.3390/molecules25020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Curcumin has been investigated extensively for cancer prevention, but it has been proposed that long-term treatments may promote clonal evolution and gain of cellular resistance, potentially rendering cancer cells less sensitive to future therapeutic interventions. Here, we used long-term, low-dose treatments to determine the potential for adverse effects in non-small cell lung cancer (NSCLC) cells. IC50s for curcumin, cisplatin, and pemetrexed in A549, PC9, and PC9ER NSCLC cells were evaluated using growth curves. IC50s were subsequently re-assessed following long-term, low-dose curcumin treatment and a three-month treatment withdrawal period, with a concurrent assessment of oncology-related protein expression. Doublet cisplatin/pemetrexed-resistant cell lines were created and the IC50 for curcumin was determined. Organotypic NSCLC-fibroblast co-culture models were used to assess the effects of curcumin on invasive capacity. Following long-term treatment/treatment withdrawal, there was no significant change in IC50s for the chemotherapy drugs, with chemotherapy-resistant cell lines exhibiting similar sensitivity to curcumin as their non-resistant counterparts. Curcumin (0.25-0.5 µM) was able to inhibit the invasion of both native and chemo-resistant NSCLC cells in the organotypic co-culture model. In summary, long-term curcumin treatment in models of NSCLC neither resulted in the acquisition of pro-carcinogenic phenotypes nor caused resistance to chemotherapy agents.
Collapse
|
24
|
Ma Y, Zhang M, Wang J, Huang X, Kuai X, Zhu X, Chen Y, Jia L, Feng Z, Tang Q, Liu Z. High-Affinity Human Anti-c-Met IgG Conjugated to Oxaliplatin as Targeted Chemotherapy for Hepatocellular Carcinoma. Front Oncol 2019; 9:717. [PMID: 31428584 PMCID: PMC6688309 DOI: 10.3389/fonc.2019.00717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most mortality-causing solid cancers globally and the second largest cause of death among malignancies. Oxaliplatin, a platinum-based drug, has been widely utilized in the treatment of malignancies such as colorectal cancer and hepatocellular carcinoma, yet its usage is limited because of severe side effects of cytotoxicity to normal tissues. c-Met, a receptor tyrosine kinase, is expressed aberrantly on the surface of HCC. The purpose of this study was to synthesise a humanized antibody against c-Met (anti-c-Met IgG) and conjugate it to oxaliplatin to develop a novel antibody-drug conjugate (ADC). Anti-c-Met IgG was detected to be loaded with ~4.35 moles oxaliplatin per mole of antibody. ELISA and FCM confirmed that ADC retained a high and selective binding affinity for c-Met protein and c-Met-positive HepG2 cells. In vitro, the cytotoxicity tests and biological function assay indicated that ADC showed much higher cytotoxicity and functioning in c-Met-positive HepG2 cells, compared with shMet-HepG2 cells expressing lower levels of c-Met. Furthermore, compared with free oxaliplatin, ADC significantly improved cytotoxicity to c-Met-positive tumours and avoided off-target cell toxicity in vivo. In conclusion, by targeting c-Met-expressing hepatoma cells, ADC can provide a platform to reduce drug toxicity and improve drug efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yilan Ma
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayan Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Huang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xingwang Kuai
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiaojuan Zhu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- Otorhinolaryngological Department, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lizhou Jia
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Tang
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Facchinetti F, Pilotto S, Metro G, Baldini E, Bertolaccini L, Cappuzzo F, Delmonte A, Gasparini S, Inno A, Marchetti A, Passiglia F, Puma F, Ricardi U, Rossi A, Crinò L, Novello S. Treatment of metastatic non-small cell lung cancer: 2018 guidelines of the Italian Association of Medical Oncology (AIOM). TUMORI JOURNAL 2019; 105:3-14. [PMID: 31264531 DOI: 10.1177/0300891619857418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment landscape of metastatic non-small cell lung cancer (NSCLC) has dramatically evolved in recent years, since the recognition of several clinical-biological entities requiring personalized treatment approaches, leading to significant improvements in patients' survival outcomes. In particular, targeted therapies acting against EGFR, ALK, and ROS1, and immunotherapeutic agents modulating the PD-1/PD-L1 axis, represent new milestones in the treatment of advanced disease, supporting a chemotherapy backbone within a multidisciplinary model. The Italian Association of Medical Oncology (AIOM) has developed evidence-based guidelines for the management of lung tumors. Given the epidemiologic relevance, this report is dedicated to the treatment of advanced/metastatic NSCLC. These guidelines serve as a practical tool for oncologists, physicians, and other healthcare professionals to easily embrace the updated key points of NSCLC treatment strategies. Considering the upcoming introduction of potential new standards of care in several disease settings, these guidelines represent a benchmark from which to move forward.
Collapse
Affiliation(s)
- Francesco Facchinetti
- 1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Sara Pilotto
- 2 Medical Oncology, University of Verona, Verona University Hospital, Verona, Italy
| | - Giulio Metro
- 3 Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Editta Baldini
- 4 Department of Oncology, S. Luca Hospital, Lucca, Italy
| | - Luca Bertolaccini
- 5 Division of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Federico Cappuzzo
- 6 Department of Oncology and Hematology, AUSL Romagna, Ravenna, Italy
| | - Angelo Delmonte
- 7 Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Stefano Gasparini
- 8 Department of Biologic Sciences and Public Health, Polytechnic University of Marche Region; Pulmonary Diseases Unit, Azienda Ospedali Riuniti, Ancona, Italy
| | - Alessandro Inno
- 9 Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar, Verona, Italy
| | - Antonio Marchetti
- 10 Center of Predictive Molecular Medicine, Center of Excellence on Aging University-Foundation, Chieti, Italy
| | - Francesco Passiglia
- 11 Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Francesco Puma
- 12 Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Umberto Ricardi
- 13 Radiation Oncology, Department of Oncology, University of Torino, Torino, Italy
| | - Antonio Rossi
- 14 Division of Medical Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Foggia, Italy
| | - Lucio Crinò
- 7 Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvia Novello
- 11 Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| |
Collapse
|
26
|
Di Noia V, D’Argento E, Pilotto S, Ferrara MG, Milella M, Tortora G, Bria E. Exploiting MET dysregulation in EGFR-addicted non-small-cell lung carcinoma: a further step toward personalized medicine. Transl Lung Cancer Res 2018; 7:S312-S317. [PMID: 30705843 PMCID: PMC6328682 DOI: 10.21037/tlcr.2018.12.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Vincenzo Di Noia
- U.O.C. Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ettore D’Argento
- U.O.C. Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Pilotto
- U.O.C. Oncology, Azienda Ospedaliera Universitaria Integrata, University and Hospital Trust of Verona, Verona, Italy
| | - Miriam Grazia Ferrara
- U.O.C. Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Milella
- U.O.C. Oncology, Azienda Ospedaliera Universitaria Integrata, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- U.O.C. Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emilio Bria
- U.O.C. Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
27
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 2018; 17:45. [PMID: 29455668 PMCID: PMC5817860 DOI: 10.1186/s12943-018-0796-y] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells. However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations, overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their use in clinical research.
Collapse
Affiliation(s)
- Yazhuo Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengfang Xia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Jin
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shufei Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|