1
|
Hamidi S, Hu MI. RET kinase inhibitors for the treatment of RET-altered thyroid cancers: Current knowledge and future directions. ANNALES D'ENDOCRINOLOGIE 2024; 85:118-126. [PMID: 38342224 DOI: 10.1016/j.ando.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
RET gain-of-function mutations are the most common drivers in medullary thyroid carcinoma, while RET fusions are identified in 5-10% of papillary thyroid carcinomas. Thus, RET plays a major role in the tumorigenesis of thyroid neoplasia, making it a valuable therapeutic target. Over a decade ago, multikinase inhibitors (MKIs) were first shown to have variable degrees of anti-RET activity. Despite some clinical efficacy in RET-altered thyroid cancers, significant off-target activity of MKIs led to marked toxicities limiting their use. More recently, two potent, highly selective RET inhibitors, selpercatinib and pralsetinib, were shown to have notable efficacy in RET-altered cancers, associated with more tolerable side effect profiles than those of MKIs. However, these treatments are non-curative, and emerging evidence suggests that patients who progress on therapy acquire mutations conferring drug resistance. Thus, the quest for a more definitive treatment for advanced, RET-altered thyroid cancers continues. This year we celebrate the 30th anniversary of the association of germline mutations of the RET proto-oncogene with the multiple endocrine neoplasia (MEN) type 2 syndromes. In this timely review, we summarize the current state-of-the-art treatment strategies for RET-altered thyroid cancers, their limitations, as well as future therapeutic avenues.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA.
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA
| |
Collapse
|
2
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
3
|
Zhao L, Zhang J, Wang N, Zhang D, Wang Z, Yu Y, Mei Q, Liao D, Jia Y, Kong F. Immune checkpoint inhibitors for RET fusion non-small cell lung cancer: hopes and challenges. Anticancer Drugs 2023; 34:979-984. [PMID: 36729098 DOI: 10.1097/cad.0000000000001483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immune ch eckpoint inhibitors (ICIs) represent a milestone in advanced nonsmall cell lung cancer (NSCLC). Nevertheless, NSCLC with known oncogenic drivers has been overlooked in most studies evaluating anti-programmed death-1/programmed death ligand 1. Rearranged during transfection proto-oncogene (RET) gene fusion was identified in 1-2% of NSCLC patients. More recently, two selective RET inhibitors, selpercatinib and pralsetinib, demonstrated higher efficacy and good tolerability. In contrast, the activity of ICIs in RET fusion NSCLC has not been well characterized. Here, we analyzed the clinical data of ICIs and discussed the suitable time to introduce ICIs in RET fusion NSCLC. Finally, we put forward future strategies to adequately maximize the efficacy of ICIs treatment in patients with RET fusion NSCLC in the upcoming era of combination immunotherapies.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Ziwei Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, China
| |
Collapse
|
4
|
Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 2023; 14:1176731. [PMID: 37435488 PMCID: PMC10331470 DOI: 10.3389/fendo.2023.1176731] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
The treatment of advanced, radioiodine refractory, differentiated thyroid cancers (RR-DTCs) has undergone major advancements in the last decade, causing a paradigm shift in the management and prognosis of these patients. Better understanding of the molecular drivers of tumorigenesis and access to next generation sequencing of tumors have led to the development and Food and Drug Administration (FDA)-approval of numerous targeted therapies for RR-DTCs, including antiangiogenic multikinase inhibitors, and more recently, fusion-specific kinase inhibitors such as RET inhibitors and NTRK inhibitors. BRAF + MEK inhibitors have also been approved for BRAF-mutated solid tumors and are routinely used in RR-DTCs in many centers. However, none of the currently available treatments are curative, and most patients will ultimately show progression. Current research efforts are therefore focused on identifying resistance mechanisms to tyrosine kinase inhibitors and ways to overcome them. Various novel treatment strategies are under investigation, including immunotherapy, redifferentiation therapy, and second-generation kinase inhibitors. In this review, we will discuss currently available drugs for advanced RR-DTCs, potential mechanisms of drug resistance and future therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Zhao L, Wang N, Zhang D, Jia Y, Kong F. A comprehensive overview of the relationship between RET gene and tumor occurrence. Front Oncol 2023; 13:1090757. [PMID: 36865807 PMCID: PMC9971812 DOI: 10.3389/fonc.2023.1090757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
RET gene plays significant roles in the nervous system and many other tissues. Rearranged during transfection (RET) mutation is related to cell proliferation, invasion, and migration. Many invasive tumors (e.g., non-small cell lung cancer, thyroid cancer, and breast cancer) were found to have changes in RET. Recently, great efforts have been made against RET. Selpercatinib and pralsetinib, with encouraging efficacy, intracranial activity, and tolerability, were approved by the Food and Drug Administration (FDA) in 2020. The development of acquired resistance is inevitable, and a deeper exploration should be conducted. This article systematically reviewed RET gene and its biology as well as the oncogenic role in multiple cancers. Moreover, we also summarized recent advances in the treatment of RET and the mechanism of drug resistance.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,*Correspondence: Fanming Kong,
| |
Collapse
|
7
|
Cao S, Tan C, Fei A, Hu G, Fu M, Lv J. Insights into pralsetinib resistance to the non-gatekeeper RET kinase G810C mutation through molecular dynamics simulations. J Mol Model 2022; 29:24. [PMID: 36576611 DOI: 10.1007/s00894-022-05429-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE RET (rearranged during transfection) kinase, as a transmembrane receptor tyrosine kinase, is a therapeutic target for several human cancer such as non-small cell lung cancer (NSCLC) and thyroid cancer. Pralsetinib is a recently approved drug for the treatment of RET-driven NSCLC and thyroid cancers. A single point mutation G810C at the C-lobe of the RET kinase causes pralsetinib resistance to this non-gatekeeper variant. However, the detailed mechanism remains poorly understood. METHODS Here, multiple microsecond molecular dynamics (MD) simulations, molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations, and community network analysis were performed to reveal the mechanism of pralsetinib resistance to the RET G810C mutant. RESULTS The simulations showed that the G810C mutation had a minor effect on the overall conformational dynamics of the RET kinase domain. Energetic analysis suggested that the G810C mutation reduced the binding affinity of pralsetinib to the mutant. Per-residue energy contribution and structural analyses revealed that the hydrogen bonding interactions between pralsetinib and the hinge residues Glu805 and Ala807 were disrupted in the G810C mutant, which were responsible for the decreased binding affinity of pralsetinib to the mutant. CONCLUSIONS The obtained results may provide understanding of the mechanism of pralsetinib resistance to the non-gatekeeper RET G810C mutant.
Collapse
Affiliation(s)
- Shu Cao
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Changbin Tan
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Anhua Fei
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Gangqiang Hu
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Ming Fu
- Department of Urology, Ezhou Central Hospital, Hubei, 436000, China
| | - Jun Lv
- Department of Neurology, Ezhou Central Hospital, Hubei, 436000, China.
| |
Collapse
|
8
|
Zhou Y, Xiang S, Yang F, Lu X. Targeting Gatekeeper Mutations for Kinase Drug Discovery. J Med Chem 2022; 65:15540-15558. [PMID: 36395392 DOI: 10.1021/acs.jmedchem.2c01361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clinically acquired resistance is a major challenge in cancer therapies with small-molecule kinase inhibitors (SMKIs). Gatekeeper mutations in the ATP-binding pocket of kinases are the most common mutations leading to acquired resistance. To date, seven new-generation kinase inhibitors targeting gatekeeper mutations have been approved by the FDA; however, the clinical need is still unmet. Here, we systematically summarize the types of gatekeeper mutations across the kinase family, the structural basis for acquired resistance, and newly developed SMKIs targeting gatekeeper mutations as well as highlight the opportunities and challenges of kinase drug discovery for targeting gatekeeper mutations.
Collapse
Affiliation(s)
- Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Fang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
9
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
10
|
Kucharczyk T, Krawczyk P, Kowalski DM, Płużański A, Kubiatowski T, Kalinka E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers (Basel) 2022; 14:5298. [PMID: 36358717 PMCID: PMC9657474 DOI: 10.3390/cancers14215298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2023] Open
Abstract
Mutations and fusions of RET (rearranged during transfection) gene are detected in a few common types of tumors including thyroid or non-small cells lung cancers. Multiple kinase inhibitors (MKIs) do not show spectacular effectiveness in patients with RET-altered tumors. Hence, recently, two novel RET-specific inhibitors were registered in the US and in Europe. Selpercatinib and pralsetinib showed high efficacy in clinical trials, with fewer adverse effects, in comparison to previously used MKIs. However, the effectiveness of these new drugs may be reduced by the emergence of resistance mutations in RET gene and activation of different activating signaling pathways. This review presents the function of the normal RET receptor, types of molecular disturbances of the RET gene in patients with various cancers, methods of detecting these abnormalities, and the effectiveness of modern anticancer therapies (ranging from immunotherapies, through MKIs, to RET-specific inhibitors).
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dariusz M. Kowalski
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Adam Płużański
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Tomasz Kubiatowski
- Oncology and Immunology Clinic, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 10-228 Olsztyn, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 90-302 Lodz, Poland
| |
Collapse
|
11
|
Zhao L, Mei Q, Yu Y, Wang N, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F. Research Progress on RET Fusion in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:894214. [PMID: 35707347 PMCID: PMC9190697 DOI: 10.3389/fonc.2022.894214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Great progress has been made in the treatment of driver gene-positive Non- Small Cell Lung Cancer (NSCLC) in recent years. RET fusion was seen in 0.7% to 2% of NSCLC and was associated with younger age and never-smoker status. The pralsetinib and selpercatinib for RET fusion NSCLC was recommended by the 2021 NSCLC treatment guidelines. This review outlines the research progress in the treatment of RET fusion NSCLC, identifies current challenges and describes proposals for improving the outlook for these patients.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhui Zuo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Xie
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
12
|
Meng Y, Yang Y, Fang Y, Lin X, Xie X, Deng H, Wu J, Zhou M, Sun N, Xie Z, Liu M, Ouyang M, Qin Y, Su C, Zhou C. The Treatment Status of Patients in NSCLC With RET Fusion Under the Prelude of Selective RET-TKI Application in China: A Multicenter Retrospective Research. Front Oncol 2022; 12:864367. [PMID: 35692799 PMCID: PMC9176213 DOI: 10.3389/fonc.2022.864367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
Background Rearranged during transfection (RET) fusion is a kind of uncommon mutation (about 1%) in non-small cell lung cancer (NSCLC). Although selective tyrosine kinase inhibitors (TKI) (selpercatinib and pralsetinib) have been available, there are no real-world data about the difference in the efficacy between RET-TKI and other regimens in China. Methods We conducted a multicenter retrospective analysis of 49 patients with RET-fusion-positive NSCLC. The characteristics and the clinical outcomes with RET-TKI, multi-kinase inhibitor (MKI), systematic chemotherapy, and immune-checkpoint inhibitor (ICI)-based regimens were evaluated. Results Of the 92 treatments in patients included, RET-TKI was administered 24 times (26.1%), systematic chemotherapy was 35 times (38.0%), ICI-based regimens was 26 times (28.3%), and MKI was 7 times (7.6%). RET-TKI had a higher objective response rate than the chemotherapy and ICI-based regimens (63.6% vs. 14.3% vs. 21.0%, p < 0.001). The median progress-free survival (mPFS) of RET-TKI, chemotherapy, immunotherapy, and MKI was 16.9 (95% CI: 1.8-32.0) months, 11.9 (95% CI: 7.7-16.1) months, 6.7 (95% CI: 2.9-10.5) months, and 2.8 (95% CI: 1.1-4.4) months, respectively. The mPFS of RET-TKI was longer than MKI and immunotherapy (p < 0.001), while without difference with chemotherapy (p = 0.096). Moreover, chemotherapy had longer mPFS than MKI (p < 0.001). In subgroup analysis, patients with brain metastases in RET-TKI treatment had worse mPFS than the one of patients without brain metastases (6.1 (95% CI: 0.0-13.9) months and 8.5 (95% CI: 6.3-10.6) months, p = 0.012). For patients having chemotherapy with or without angiogenesis inhibitors, the mPFS was 12.0 (95% CI: 11.05-13.02) months and 9.1 (95% CI: 8.31-9.89) months (p = 0.468). In the group of ICI-based regimens, the expression level of PD-L1 did not affect the mPFS of ICI [PD-L1 (+) vs. PD-L1 (-): 4.7 (95% CI: 1.8-9.0) months vs. 7.6 (95% CI: 1.1-14.0) months, p = 0.910]. For overall patients, ECOG PS score, therapy lines, and therapeutic regimens were the independent factors affecting the prognosis. Conclusions In RET-fusion-positive NSCLC, RET-TKI is the best choice for a better response rate and PFS. In addition, chemotherapy which may bring a good PFS, is still a good choice for this group of patients.
Collapse
Affiliation(s)
- Yan Meng
- Ward 2, Department of Oncology, Hainan Cancer Hospital, Haikou, China
| | - Yilin Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujia Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianhui Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Maolin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ni Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ramesh P, Shin WH, Veerappapillai S. Discovery of a Potent Candidate for RET-Specific Non-Small-Cell Lung Cancer-A Combined In Silico and In Vitro Strategy. Pharmaceutics 2021; 13:pharmaceutics13111775. [PMID: 34834190 PMCID: PMC8619101 DOI: 10.3390/pharmaceutics13111775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Rearranged during transfection (RET) is a tyrosine kinase oncogenic receptor, activated in several cancers including non-small-cell lung cancer (NSCLC). Multiple kinase inhibitors vandetanib and cabozantinib are commonly used in the treatment of RET-positive NSCLC. However, specificity, toxicity, and reduced efficacy limit the usage of multiple kinase inhibitors in targeting RET protein. Thus, in the present investigation, we aimed to figure out novel and potent candidates for the inhibition of RET protein using combined in silico and in vitro strategies. In the present study, screening of 11,808 compounds from the DrugBank repository was accomplished by different hypotheses such as pharmacophore, e-pharmacophore, and receptor cavity-based models in the initial stage. The results from the different hypotheses were then integrated to eliminate the false positive prediction. The inhibitory activities of the screened compounds were tested by the glide docking algorithm. Moreover, RF score, Tanimoto coefficient, prime-MM/GBSA, and density functional theory calculations were utilized to re-score the binding free energy of the docked complexes with high precision. This procedure resulted in three lead molecules, namely DB07194, DB03496, and DB11982, against the RET protein. The screened lead molecules together with reference compounds were then subjected to a long molecular dynamics simulation with a 200 ns time duration to validate the inhibitory activity. Further analysis of compounds using MM-PBSA and mutation studies resulted in the identification of potent compound DB07194. In essence, a cell viability assay with RET-specific lung cancer cell line LC-2/ad was also carried out to confirm the in vitro biological activity of the resultant compound, DB07194. Indeed, the results from our study conclude that DB07194 can be effectively translated for this new therapeutic purpose, in contrast to the properties for which it was originally designed and synthesized.
Collapse
Affiliation(s)
- Priyanka Ramesh
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - Woong-Hee Shin
- Department of Chemical Science Education, College of Education, Sunchon National University, Suncheon 57922, Korea
- Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (W.-H.S.); (S.V.)
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
- Correspondence: (W.-H.S.); (S.V.)
| |
Collapse
|
14
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|