1
|
Zhang H, Kong L, Cao Z, Zhu Y, Jiang Y, Wang X, Jiang R, Liu Y, Zhou J, Kang Y, Zhen X, Kong N, Wu M, Yan G, Sun H. EHD1 impaired decidualization of endometrial stromal cells in recurrent implantation failure: role of SENP1 in modulating progesterone receptor signalling†. Biol Reprod 2024; 110:536-547. [PMID: 38011671 DOI: 10.1093/biolre/ioad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Liping Kong
- Nanjing Vocational Health College, Nanjing, China
| | - Zhiwen Cao
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yinchun Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaoying Wang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yu Kang
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Wu
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Marco S, Neilson M, Moore M, Perez-Garcia A, Hall H, Mitchell L, Lilla S, Blanco GR, Hedley A, Zanivan S, Norman JC. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat Commun 2021; 12:6829. [PMID: 34819513 PMCID: PMC8613289 DOI: 10.1038/s41467-021-26839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
Collapse
Affiliation(s)
- Sergi Marco
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | | | - Arantxa Perez-Garcia
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Holly Hall
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Ann Hedley
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Jim C Norman
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
3
|
Tripathy MK, Deswal R, Sopory SK. Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses. Curr Genomics 2021; 22:26-40. [PMID: 34045922 PMCID: PMC8142350 DOI: 10.2174/1389202922666210114102743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Endosomal trafficking plays an integral role in various eukaryotic cellular activities and is vital for higher-order functions in multicellular organisms. RAB GTPases are important proteins that influence various aspects of membrane traffic, which consequently influence many cellular functions and responses. Compared to yeast and mammals, plants have evolved a unique set of plant-specific RABs that play a significant role in their development. RABs form the largest family of small guanosine triphosphate (GTP)-binding proteins, and are divided into eight sub-families named RAB1, RAB2, RAB5, RAB6, RAB7, RAB8, RAB11 and RAB18. Recent studies on different species suggest that RAB proteins play crucial roles in intracellular trafficking and cytokinesis, in autophagy, plant microbe interactions and in biotic and abiotic stress responses. This review recaptures and summarizes the roles of RABs in plant cell functions and in enhancing plant survival under stress conditions.
Collapse
Affiliation(s)
- Manas K Tripathy
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Renu Deswal
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| | - Sudhir K Sopory
- 1International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
4
|
Early Endosome Morphology in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:335-343. [PMID: 29721961 DOI: 10.1007/978-3-319-75402-4_41] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early endosomes are organelles that receive macromolecules and solutes from the extracellular environment. The major function of early endosomes is to sort these cargos into recycling and degradative compartments of the cell. Degradation of the cargo involves maturation of early endosomes into late endosomes, which, after acquisition of hydrolytic enzymes, form lysosomes. Endosome maturation involves recruitment of specific proteins and lipids to the early endosomal membrane, which drives changes in endosome morphology. Defects in early endosome maturation are generally accompanied by alterations in morphology, such as increase in volume and/or number. Enlarged early endosomes have been observed in Alzheimer's disease and Niemann Pick Disease type C, which also exhibit defects in endocytic sorting. This article discusses the mechanisms that regulate early endosome morphology and highlights the potential importance of endosome maturation in the retinal pigment epithelium.
Collapse
|
5
|
Yakymovych I, Yakymovych M, Heldin CH. Intracellular trafficking of transforming growth factor β receptors. Acta Biochim Biophys Sin (Shanghai) 2018; 50:3-11. [PMID: 29186283 DOI: 10.1093/abbs/gmx119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) family members signal via heterotetrameric complexes of type I (TβRI) and type II (TβRII) dual specificity kinase receptors. The availability of the receptors on the cell surface is controlled by several mechanisms. Newly synthesized TβRI and TβRII are delivered from the Golgi apparatus to the cell surface via separate routes. On the cell surface, TGFβ receptors are distributed between different microdomains of the plasma membrane and can be internalized via clathrin- and caveolae-mediated endocytic mechanisms. Although receptor endocytosis is not essential for TGFβ signaling, localization of the activated receptor complexes on the early endosomes promotes TGFβ-induced Smad activation. Caveolae-mediated endocytosis, which is widely regarded as a mechanism that facilitates the degradation of TGFβ receptors, has been shown to be required for TGFβ signaling via non-Smad pathways. The importance of proper control of TGFβ receptor intracellular trafficking is emphasized by clinical data, as mislocalization of receptors has been described in connection with several human diseases. Thus, control of intracellular trafficking of the TGFβ receptors together with the regulation of their expression, posttranslational modifications and down-regulation, ensure proper regulation of TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Mariya Yakymovych
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
6
|
Faucon A, Benhelli-Mokrani H, Fleury F, Dutertre S, Tramier M, Boucard J, Lartigue L, Nedellec S, Hulin P, Ishow E. Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. NANOSCALE 2017; 9:18094-18106. [PMID: 29135000 DOI: 10.1039/c7nr06533g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed. Moreover, assessing the reality of bioconjugation represents high challenges given the sub-nanomolar concentrations resulting from the commonly adopted nanoprecipitation fabrication process. Here, we describe how the combination of a magnetic shell allows us to easily generate red-emitting FONs conjugated with the epidermal growth factor ligand (EGF), a small protein promoting cancer cell proliferation by activating the EGF receptor (EGFR) pathway. Dual color fluorescence correlation spectroscopy combined with immunofluorescence is originally harnessed in its time trace mode to unambiguously demonstrate covalent attachment between the FON and EGF at sub-nanomolar concentrations. Strong asymmetric clustering of EGF-conjugated FONs is observed at the membrane of MDA-MB-468 human breast cancer cells overexpressing EGF receptors using super-resolution fluorescence microscopy. Such high recruitment of EGF-conjugated FONs is attributed to their EGF multivalency (4.7 EGF per FON) which enables efficient EGFR activation and subsequent phosphorylation. The large hydrodynamic diameter (DH ∼ 301 nm) of EGF-conjugated FONs prevents immediate engulfment of the sequestered receptors, which provides very bright and localized spots in less than 30 minutes. The reported bioconjugated nanoassemblies could thus serve as ultra-bright probes of breast cancer cells with EGFR-overexpression that is often associated with poor prognosis.
Collapse
Affiliation(s)
- Adrien Faucon
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
8
|
Bhattacharyya S, Rainey MA, Arya P, Mohapatra BC, Mushtaq I, Dutta S, George M, Storck MD, McComb RD, Muirhead D, Todd GL, Gould K, Datta K, Gelineau-van Waes J, Band V, Band H. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep 2016; 6:20727. [PMID: 26884322 PMCID: PMC4756679 DOI: 10.1038/srep20727] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Priyanka Arya
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Samikshan Dutta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Rodney D McComb
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Muirhead
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gordon L Todd
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karen Gould
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Vimla Band
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Tsutsui T, Nakano A, Ueda T. The Plant-Specific RAB5 GTPase ARA6 is Required for Starch and Sugar Homeostasis in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1073-83. [PMID: 25713173 DOI: 10.1093/pcp/pcv029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
Endosomal trafficking plays integral roles in various eukaryotic cell activities. In animal cells, a member of the RAB GTPase family, RAB5, is a key regulator of various endosomal functions. In addition to orthologs of animal RAB5, plants harbor the plant-specific RAB5 group, the ARA6 group, which is conserved in land plant lineages. In Arabidopsis thaliana, ARA6 and conventional RAB5 act in distinct endosomal trafficking pathways; ARA6 mediates trafficking from endosomes to the plasma membrane, whereas conventional RAB5 acts in endocytic and vacuolar trafficking pathways. ARA6 is also required for normal salt and osmotic stress tolerance, although the functional link between ARA6 and stress tolerance remains unclear. In this study, we investigated ARA6 function in stress tolerance by monitoring broad-scale changes in gene expression in the ara6 mutant. A comparison of the expression profiles between wild-type and ara6-1 plants revealed that the expression of the Qua-Quine Starch (QQS) gene was significantly affected by the ara6-1 mutation. QQS is involved in starch homeostasis, consistent with the starch content decreasing in the ara6 mutants to approximately 60% of that of the wild-type plant. In contrast, the free and total glucose content increased in the ara6 mutants. Moreover, the proliferation of Pseudomonas syringae pv. tomato DC3000 was repressed in ara6 mutants, which could be attributed to the elevated sugar content. These results suggest that ARA6 is responsible for starch and sugar homeostasis, most probably through the function of QQS.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
10
|
Brodsky FM, Sosa RT, Ybe JA, O'Halloran TJ. Unconventional functions for clathrin, ESCRTs, and other endocytic regulators in the cytoskeleton, cell cycle, nucleus, and beyond: links to human disease. Cold Spring Harb Perspect Biol 2014; 6:a017004. [PMID: 25183831 DOI: 10.1101/cshperspect.a017004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, Departments of Pharmaceutical Chemistry and Microbiology and Immunology, The G.W. Hooper Foundation, University of California, San Francisco, San Francisco, California 94143-0552
| | - R Thomas Sosa
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | - Joel A Ybe
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Theresa J O'Halloran
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| |
Collapse
|
11
|
Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. PLoS One 2014; 9:e87373. [PMID: 24466349 PMCID: PMC3900708 DOI: 10.1371/journal.pone.0087373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023] Open
Abstract
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | - Shinsuke Sugiura
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Toshinori Komatsu
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Tada
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryutaro Isoda
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naomi Tanigawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshiko Kato
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoyuki Ishida
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kaoru Kobayashi
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Misako Nakashima
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
12
|
Zhu J, Lin F, Brown DA, Clark RAF. A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals. J Invest Dermatol 2013; 134:921-929. [PMID: 24304816 PMCID: PMC3961502 DOI: 10.1038/jid.2013.463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/14/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022]
Abstract
Growth factor-binding domains identified in various extracellular matrix (ECM) proteins have been shown to regulate growth factor activity in many ways. Recently we identified a fibronectin peptide (P12) that can bind platelet-derived growth factor BB (PDGF-BB) and promote adult human dermal fibroblast (AHDF) survival under stress. In vivo experiments in a porcine burn injury model showed that P12 limited burn injury progression, suggesting an active role in tissue survival. In this report, we explored the molecular mechanism of this peptide in ADHF under nutrient deprivation. Our results showed that P12 acted like some cell penetrating peptides (CPPs) in that it redirected ligand-bound PDGFR from the clathrin-dependent endocytic pathway to a slower, macropinocytosis-like pathway. P12 slowed internalization and degradation of PDGF-BB, augmented its survival signals, and promoted cell survival after nutrient-removal. Our findings demonstrate a mechanism for a potential therapeutic peptide that increases cell and tissue survival by acting as a cofactor to PDGF-BB.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Fubao Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Richard A F Clark
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA; Department of Dermatology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
13
|
Yamada K, Hayashi M, Madokoro H, Nishida H, Du W, Ohnuma K, Sakamoto M, Morimoto C, Yamada T. Nuclear localization of CD26 induced by a humanized monoclonal antibody inhibits tumor cell growth by modulating of POLR2A transcription. PLoS One 2013; 8:e62304. [PMID: 23638030 PMCID: PMC3639274 DOI: 10.1371/journal.pone.0062304] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/19/2013] [Indexed: 12/29/2022] Open
Abstract
CD26 is a type II glycoprotein known as dipeptidyl peptidase IV and has been identified as one of the cell surface markers associated with various types of cancers and a subset of cancer stem cells. Recent studies have suggested that CD26 expression is involved in tumor growth, tumor invasion, and metastasis. The CD26 is shown in an extensive intracellular distribution, ranging from the cell surface to the nucleus. We have previously showed that the humanized anti-CD26 monoclonal antibody (mAb), YS110, exhibits inhibitory effects on various cancers. However, functions of CD26 on cancer cells and molecular mechanisms of impaired tumor growth by YS110 treatment are not well understood. In this study, we demonstrated that the treatment with YS110 induced nuclear translocation of both cell-surface CD26 and YS110 in cancer cells and xenografted tumor. It was shown that the CD26 and YS110 were co-localized in nucleus by immunoelectron microscopic analysis. In response to YS110 treatment, CD26 was translocated into the nucleus via caveolin-dependent endocytosis. It was revealed that the nuclear CD26 interacted with a genomic flanking region of the gene for POLR2A, a subunit of RNA polymerase II, using a chromatin immunoprecipitation assay. This interaction with nuclear CD26 and POLR2A gene consequently led to transcriptional repression of the POLR2A gene, resulting in retarded cell proliferation of cancer cells. Furthermore, the impaired nuclear transport of CD26 by treatment with an endocytosis inhibitor or expressions of deletion mutants of CD26 reversed the POLR2A repression induced by YS110 treatment. These findings reveal that the nuclear CD26 functions in the regulation of gene expression and tumor growth, and provide a novel mechanism of mAb-therapy related to inducible translocation of cell-surface target molecule into the nucleus.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Mutsumi Hayashi
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Madokoro
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Nishida
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Wenlin Du
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Du D, Lee CF, Li XQ. Systematic differences in signal emitting and receiving revealed by PageRank analysis of a human protein interactome. PLoS One 2012; 7:e44872. [PMID: 23028653 PMCID: PMC3446998 DOI: 10.1371/journal.pone.0044872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022] Open
Abstract
Most protein PageRank studies do not use signal flow direction information in protein interactions because this information was not readily available in large protein databases until recently. Therefore, four questions have yet to be answered: A) What is the general difference between signal emitting and receiving in a protein interactome? B) Which proteins are among the top ranked in directional ranking? C) Are high ranked proteins more evolutionarily conserved than low ranked ones? D) Do proteins with similar ranking tend to have similar subcellular locations? In this study, we address these questions using the forward, reverse, and non-directional PageRank approaches to rank an information-directional network of human proteins and study their evolutionary conservation. The forward ranking gives credit to information receivers, reverse ranking to information emitters, and non-directional ranking mainly to the number of interactions. The protein lists generated by the forward and non-directional rankings are highly correlated, but those by the reverse and non-directional rankings are not. The results suggest that the signal emitting/receiving system is characterized by key-emittings and relatively even receivings in the human protein interactome. Signaling pathway proteins are frequent in top ranked ones. Eight proteins are both informational top emitters and top receivers. Top ranked proteins, except a few species-related novel-function ones, are evolutionarily well conserved. Protein-subunit ranking position reflects subunit function. These results demonstrate the usefulness of different PageRank approaches in characterizing protein networks and provide insights to protein interaction in the cell.
Collapse
Affiliation(s)
- Donglei Du
- Quantiative Study Group, Faculty of Business Administration, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Connie F. Lee
- Quantiative Study Group, Faculty of Business Administration, University of New Brunswick, Fredericton, New Brunswick, Canada
- The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, New York, United States of America
| | - Xiu-Qing Li
- Molecular Genetics Laboratory, Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
15
|
A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 2011; 13:853-9. [PMID: 21666683 DOI: 10.1038/ncb2270] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/28/2011] [Indexed: 12/29/2022]
Abstract
Endosomal trafficking plays an integral role in various eukaryotic cell activities and serves as a basis for higher-order functions in multicellular organisms. An understanding of the importance of endosomal trafficking in plants is rapidly developing, but its molecular mechanism is mostly unknown. Several key regulators of endosomal trafficking, including RAB5, which regulates diverse endocytic events in animal cells, are highly conserved. However, the identification of lineage-specific regulators in eukaryotes indicates that endosomal trafficking is diversified according to distinct body plans and lifestyles. In addition to orthologues of metazoan RAB5, land plants possess a unique RAB5 molecule, which is one of the most prominent features of plant RAB GTPase organization. Plants have also evolved a unique repertoire of SNAREs, the most distinctive of which are diverse VAMP7-related longins, including plant-unique VAMP72 derivatives. Here, we demonstrate that a plant-unique RAB5 protein, ARA6, acts in an endosomal trafficking pathway in Arabidopsis thaliana. ARA6 modulates the assembly of a distinct SNARE complex from conventional RAB5, and has a functional role in the salinity stress response. Our results indicate that plants possess a unique endosomal trafficking network and provide the first indication of a functional link between a specific RAB and a specific SNARE complex in plants.
Collapse
|
16
|
Abstract
We review mainly the work from our research group here. Our focus has been on the use of genetic methods to delineate the mechanisms of synaptic vesicle recycling and cellular trafficking. Acute temperature-sensitive paralytic mutants have been of particular value in this approach. We have primarily used screens for suppressor and enhancer mutations to identify genetic loci coding for proteins that interact with Dynamin in Drosophila. In addition, we have used reverse genetic approaches to investigate few other candidate molecules that may play a role in synaptic vesicle endocytosis. We have in particular discussed at some length the role of endocytic accessory proteins Stoned and Eps15 in vesicle recycling.
Collapse
Affiliation(s)
- Riddhi Majumder
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
17
|
Buechler C, Wanninger J, Neumeier M. Adiponectin receptor binding proteins--recent advances in elucidating adiponectin signalling pathways. FEBS Lett 2010; 584:4280-6. [PMID: 20875820 DOI: 10.1016/j.febslet.2010.09.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 01/09/2023]
Abstract
Adiponectin whose systemic levels are reduced in obesity-related diseases ameliorates insulin sensitivity and regulates biological processes like apoptosis, proliferation, migration and inflammation. Adiponectin binds to adiponectin receptors, AdipoR1 and AdipoR2, which are ubiquitously expressed. Clathrin-dependent endocytosis of AdipoR1 and adiponectin has been demonstrated to modulate adiponectin bioactivity. Recently, APPL1 has been identified as an AdipoR1 and AdipoR2 binding protein. Furthermore, activated protein kinase C1, endoplasmic reticulum protein 46 and protein kinase CK2β subunit form a complex with AdipoR1. This review summarizes recent studies exploiting heterologous expression of adiponectin receptors in yeast, and the type and function of the recently described adiponectin receptor associated proteins.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
18
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
19
|
Li M, Wang J, Ng SSM, Chan CY, He ML, Yu F, Lai L, Shi C, Chen Y, Yew DT, Kung HF, Lin MCM. Adenosine diphosphate-ribosylation factor 6 is required for epidermal growth factor-induced glioblastoma cell proliferation. Cancer 2009; 115:4959-72. [PMID: 19642173 DOI: 10.1002/cncr.24550] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND : Epidermal growth factor (EGF) signaling plays a pivotal role in gliomagenesis. The authors previously demonstrated that adenosine diphospate-ribosylation factor 6 (ARF6), a member of the Ras-related small guanosine-5'-triphospate-binding protein family, is required for EFA6A-induced glioma cell migration and invasion. However, the role of ARF6 in EGF signaling is unknown. METHODS : The authors analyzed messenger RNA (mRNA) levels of ARF6 and EGF receptor (EGFR) in 16 high-grade glioma samples and in 6 low-grade glioma samples by reverse transcriptase-polymerase chain reaction analysis. To determine whether EGF induces ARF6 expression in human glioblastoma U87 cells through transcriptional regulation and EGFR activation, the levels of ARF6 were assayed in EGF-treated U87 cells that were preincubated with a transcriptional inhibitor (actinomycin D) and an EGFR tyrosine kinase inhibitor (PD153035), respectively. The downstream signaling of EGFR-mediated ARF6 up-regulation also was investigated using specific inhibitors of mitogen-activated protein kinase (MEK), phosphatidylinositol 3' kinase (PI3K), and Janus kinase 2. The involvement of SP1 in the downstream signaling was studied by using an SP1 inhibitor (mithramycin A). Small-interfering RNAs (siRNAs) targeting ARF6 were used to investigate the effects of ARF6 on EGF-mediated glioma cell proliferation. RESULTS : The results demonstrated that ARF6 and EGFR mRNA levels were elevated in glioma tissues. Furthermore, EGF stimulated ARF6 expression in U87 cells in a dose-dependent and time-dependant manner. This stimulation was caused by increased transcription of ARF6 and by activation of the MEK/extracellular signal-regulated kinase 1 and 2 (ERK1/2) and PI3K signaling pathways. It is noteworthy that SP1 was essential for EGF-induced ARF6 up-regulation. Finally, EGF-induced glioblastoma cell proliferation depended on ARF6, because the suppression of ARF6 by siRNA or by a dominant-negative mutant significantly inhibited EGF-induced cell proliferation. CONCLUSIONS : The results of the current study suggested that EGF-induced ARF6 expression plays a significant role in glioma cell proliferation. Cancer 2009. (c) 2009 American Cancer Society.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, Open Laboratory of Chemical Biology, the University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Di Fiore PP. Endocytosis, signaling and cancer, much more than meets the eye. Preface. Mol Oncol 2009; 3:273-9. [PMID: 19628439 DOI: 10.1016/j.molonc.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, 20139 Milan, Italy.
| |
Collapse
|
21
|
Chapter 4 Functions of RAB and SNARE Proteins in Plant Life. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:183-233. [DOI: 10.1016/s1937-6448(08)02004-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Wiesenthal A, Hoffmeister M, Siddique M, Kovacevic I, Oess S, Müller-Esterl W, Siehoff-Icking A. NOSTRINβ- A Shortened NOSTRIN Variant with A Role in Transcriptional Regulation. Traffic 2008; 10:26-34. [DOI: 10.1111/j.1600-0854.2008.00850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jones AT. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides. Int J Pharm 2007; 354:34-8. [PMID: 18068916 DOI: 10.1016/j.ijpharm.2007.10.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/19/2007] [Accepted: 10/30/2007] [Indexed: 01/22/2023]
Abstract
A major goal in drug delivery is to be able to design a macromolecular entity that utilises an endocytic pathway to deliver a bioactive payload into a malfunctioning cell. However, the effectiveness of this approach may be constrained by insufficient information regarding the fate of the delivery vector within the confines of the endo-lysosomal network. Successful drug delivery through this mechanism is therefore dependent on an equal high level of understanding of the specific endocytic pathways that are inherent in the target cell and the traffic and fate of the macromolecule within endocytic organelles. Cell penetrating peptides (CPPs) are promising candidate vectors for delivering macromolecules, however, there is little consensus regarding their exact mechanism of uptake. This review highlights the numerous endocytic pathways and sorting mechanisms that may deliver CPPs to a number of cellular destinations. Our use of non-adherent leukaemia cell lines to study the cellular dynamics of CPPs HIV-TAT and octaarginine is also discussed.
Collapse
Affiliation(s)
- Arwyn T Jones
- Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff CF10 3XF, United Kingdom.
| |
Collapse
|
24
|
Gardiner FC, Costa R, Ayscough KR. Nucleocytoplasmic trafficking is required for functioning of the adaptor protein Sla1p in endocytosis. Traffic 2007; 8:347-58. [PMID: 17286805 PMCID: PMC1989034 DOI: 10.1111/j.1600-0854.2007.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.
Collapse
Affiliation(s)
- Fiona C. Gardiner
- Department of Molecular Biology and Biotechnology, University of Sheffield Firth Court, Western Bank Sheffield, S10 2TN Tel: +44 114 222 2309 Fax: +44 114 222 2800
| | - Rosaria Costa
- Department of Molecular Biology and Biotechnology, University of Sheffield Firth Court, Western Bank Sheffield, S10 2TN Tel: +44 114 222 2309 Fax: +44 114 222 2800
| | - Kathryn R. Ayscough
- Department of Molecular Biology and Biotechnology, University of Sheffield Firth Court, Western Bank Sheffield, S10 2TN Tel: +44 114 222 2309 Fax: +44 114 222 2800
| |
Collapse
|
25
|
Ameen N, Silvis M, Bradbury NA. Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 2007; 6:1-14. [PMID: 17098482 PMCID: PMC1964799 DOI: 10.1016/j.jcf.2006.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/25/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only into the patho-physiology of cystic fibrosis, but also provides potential drug targets to help cure this debilitating disease.
Collapse
Affiliation(s)
- Nadia Ameen
- Department of Paediatrics, University of Pittsburgh School of Medicine
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | - Mark Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | | |
Collapse
|
26
|
Fischer JA, Eun SH, Doolan BT. Endocytosis, endosome trafficking, and the regulation of Drosophila development. Annu Rev Cell Dev Biol 2006; 22:181-206. [PMID: 16776558 DOI: 10.1146/annurev.cellbio.22.010605.093205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocytosis and endosome trafficking regulate cell signaling in unexpected ways. Here we review the contribution that Drosophila research has made to this exciting field. In addition to attenuating signaling, endocytosis shapes morphogen gradients, activates ligands, and regulates spatially receptor activation within a single cell. Moreover, some receptors signal from within endosomes, and the ability of a specific type of endosome to form controls the ability of cells to signal. Experiments in Drosophila reveal that through regulation of a variety of cell signaling pathways, endocytosis controls cell patterning and cell fate.
Collapse
Affiliation(s)
- Janice A Fischer
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Development, University of Texas, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
27
|
Eun SH, Lea K, Overstreet E, Stevens S, Lee JH, Fischer JA. Identification of genes that interact with Drosophila liquid facets. Genetics 2006; 175:1163-74. [PMID: 17179082 PMCID: PMC1840095 DOI: 10.1534/genetics.106.067959] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling.
Collapse
Affiliation(s)
- Suk Ho Eun
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chase A, Cross NCP. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clin Sci (Lond) 2006; 111:233-49. [PMID: 16961463 DOI: 10.1042/cs20060035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosine kinases play key roles in cell proliferation, survival and differentiation. Their aberrant activation, caused either by the formation of fusion genes by chromosome translocation or by intragenic changes, such as point mutations or internal duplications, is of major importance in the development of many haematological malignancies. An understanding of the mechanisms by which BCR-ABL contributes to the pathogenesis of chronic myeloid leukaemia led to the development of imatinib, the first of several tyrosine kinase inhibitors to enter clinical trials. Although the development of resistance has been problematic, particularly in aggressive disease, the development of novel inhibitors and combination with other forms of therapy shows promise.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Salisbury District Hospital, Salisbury SP2 8BJ, U.K
| | | |
Collapse
|
29
|
Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H. Novel function of β-arrestin2 in the nucleus of mature spermatozoa. J Cell Sci 2006; 119:3047-56. [PMID: 16820410 DOI: 10.1242/jcs.03046] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A growing number of proteins originally found in endocytic structures of the plasma membrane appear to be able to traffic into the nucleus, but the cellular function of this translocation remains unclear. We have found that β-arrestin2, which typically shows a cytoplasmic localization owing to constitutive nuclear export, appears in the nucleus after stimulation of the G-protein-coupled odorant receptor hOR17-4. In the nucleus, β-arrestin2 was involved in transcriptional regulation as shown by a Gal4-based transactivation assay. Moreover, we discovered that β-arrestin2 and hOR17-4, a receptor known to have a role in sperm-egg communication, colocalize in the midpiece of mature human spermatozoa. Stimulation of hOR17-4 in spermatozoa induced PKA-dependent translocation of β-arrestin2 to the nucleus and nuclear accumulation of phosphorylated MAPKs. Analysis of the interaction partners of β-arrestin2 indicates that odorant receptor signaling in spermatozoa may be important for the regulation of gene expression during the early processes of fertilization.
Collapse
Affiliation(s)
- Eva M Neuhaus
- Department of Cell Physiology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
30
|
Runyan CE, Poncelet AC, Schnaper HW. TGF-beta receptor-binding proteins: complex interactions. Cell Signal 2006; 18:2077-88. [PMID: 16824734 DOI: 10.1016/j.cellsig.2006.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/06/2023]
Abstract
Members of the Smad protein family are fundamental downstream mediators of TGF-beta signals. However, the basic, linear Smad signaling pathway is unlikely to be the sole contributor to the plethora of cell type-specific TGF-beta responses. Investigators have identified a number of molecules that interact with the TGF-beta receptors (TbetaRs) and may explain, at least in part, the tight regulation of TGF-beta effects. Understanding these TbetaR-interacting molecules is thus a matter of great potential significance for elucidating TGF-beta-family signal transduction. The present article reviews our current understanding of the roles and mechanisms of action of this relatively understudied group of molecules.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|
31
|
Hause G, Samaj J, Menzel D, Baluska F. Fine Structural Analysis of Brefeldin A-Induced Compartment Formation After High-Pressure Freeze Fixation of Maize Root Epidermis: Compound Exocytosis Resembling Cell Plate Formation during Cytokinesis. PLANT SIGNALING & BEHAVIOR 2006; 1:134-9. [PMID: 19521493 PMCID: PMC2635009 DOI: 10.4161/psb.1.3.2996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/09/2006] [Indexed: 05/23/2023]
Abstract
Formation of large perinuclear brefeldin A (BFA)-induced compartments is a characteristic feature of root apex cells, but it does not occur in shoot apex cells. BFA-induced compartments have been studied mostly using low resolution fluorescence microscopy techniques. Here, we have employed a high-resolution ultrastructural method based on ultra rapid freeze fixation of samples in order to study the formation of BFA-induced compartments in intact maize root epidermis cells in detail. This approach reveals five novel findings. Firstly, plant TGN/PGN elements are not tubular networks, as generally assumed, but rather vesicular compartments. Secondly, TGN/PGN vesicles interact with one another extensively via stalk-like connections and even fuse together via bridge-like structures. Thirdly, BFA-induced compartments are formed via extensive homotypic fusions of the TGN/PGN vesicles. Fourthly, multivesicular bodies (MVBs) are present within the BFA-induced compartments. Fifthly, mitochondria and small vacuoles accummulate abundantly around the large perinuclear BFA-induced compartments.
Collapse
Affiliation(s)
- G Hause
- Microscopy Unit; Biocenter; Martin-Luther-University Halle-Wittenberg; Halle, Germany
| | | | | | | |
Collapse
|
32
|
Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ, Luzio JP. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 2006; 281:5094-105. [PMID: 16371348 DOI: 10.1074/jbc.m508632200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Models for protein sorting at multivesicular bodies in the endocytic pathway of mammalian cells have relied largely on data obtained from yeast. These data suggest the essential role of four ESCRT complexes in multivesicular body protein sorting. However, the putative mammalian ESCRTII complex (hVps25p, hVps22p, and hVps36p) has no proven functional role in endosomal transport. We have characterized the human ESCRTII complex and investigated its function in endosomal trafficking. The human ESCRTII proteins interact with one another, with hVps20p (a component of ESCRTIII), and with their yeast homologues. Our interaction data from yeast two-hybrid studies along with experiments with purified proteins suggest an essential role for the N-terminal domain of hVps22p in the formation of a heterotetrameric ESCRTII complex. Although human ESCRTII is found in the cytoplasm and in the nucleus, it can be recruited to endosomes upon overexpression of dominant-negative hVps4Bp. Interestingly, we find that small interference RNA depletion of mammalian ESCRTII does not affect degradation of epidermal growth factor, a known cargo of the multivesicular body protein sorting pathway. We also show that depletion of the deubiquitinating enzymes AMSH (associated molecule with the SH3 domain of STAM (signal transducing adaptor molecule)) and UBPY (ubiquitin isopeptidase Y) have opposite effects on epidermal growth factor degradation, with UBPY depletion causing dramatic swelling of endosomes. Down-regulation of another cargo, the major histocompatibility complex class I in cells expressing the Kaposi sarcoma-associated herpesvirus protein K3, is unaffected in ESCRTII-depleted cells. Our data suggest that mammalian ESCRTII may be redundant, cargo-specific, or not required for protein sorting at the multivesicular body.
Collapse
Affiliation(s)
- Katherine Bowers
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
33
|
Benoist M, Gaillard S, Castets F. The striatin family: a new signaling platform in dendritic spines. ACTA ACUST UNITED AC 2006; 99:146-53. [PMID: 16460920 DOI: 10.1016/j.jphysparis.2005.12.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins of the striatin family have been identified in all multicellular animals. They are multidomain molecules containing several protein-interacting motifs. In mammals, these proteins are principally expressed in neurons with a somato-dendritic localization and high concentration in dendritic spines. Recent reports suggest that the proteins of the striatin family are molecular scaffolds that act as links between signal transduction and vesicular trafficking.
Collapse
Affiliation(s)
- Marion Benoist
- INSERM-UMR 641, Institut Jean Roche, Université de la Méditerranée, Faculté de Médecine Secteur-Nord, Boulevard P. Dramard, 13916 Marseille cedex 20, France
| | | | | |
Collapse
|
34
|
Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 2006; 123:833-47. [PMID: 16325578 DOI: 10.1016/j.cell.2005.09.011] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/07/2005] [Accepted: 09/12/2005] [Indexed: 01/07/2023]
Abstract
Chromatin modification is considered to be a fundamental mechanism of regulating gene expression to generate coordinated responses to environmental changes, however, whether it could be directly regulated by signals mediated by G protein-coupled receptors (GPCRs), the largest surface receptor family, is not known. Here, we show that stimulation of delta-opioid receptor, a member of the GPCR family, induces nuclear translocation of beta-arrestin 1 (betaarr1), which was previously known as a cytosolic regulator and scaffold of GPCR signaling. In response to receptor activation, betaarr1 translocates to the nucleus and is selectively enriched at specific promoters such as that of p27 and c-fos, where it facilitates the recruitment of histone acetyltransferase p300, resulting in enhanced local histone H4 acetylation and transcription of these genes. Our results reveal a novel function of betaarr1 as a cytoplasm-nucleus messenger in GPCR signaling and elucidate an epigenetic mechanism for direct GPCR signaling from cell membrane to the nucleus through signal-dependent histone modification.
Collapse
MESH Headings
- Acetylation
- Active Transport, Cell Nucleus/physiology
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- Cell Line
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Mice
- Mice, Knockout
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Transcription, Genetic
- beta-Arrestin 1
- beta-Arrestins
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Jiuhong Kang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang JS, Henry K, Geli MI, Lemmon SK. Cortical recruitment and nuclear-cytoplasmic shuttling of Scd5p, a protein phosphatase-1-targeting protein involved in actin organization and endocytosis. Mol Biol Cell 2006; 17:251-62. [PMID: 16251346 PMCID: PMC1345663 DOI: 10.1091/mbc.e05-10-0936] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/17/2005] [Indexed: 11/11/2022] Open
Abstract
Scd5p regulates endocytosis and cortical actin organization as a targeting subunit for the Ser/Thr protein phosphatase-1 (PP1) in yeast. To identify localization signals in Scd5p required for cell surface recruitment, visualization of GFP-tagged Scd5 truncations and deletions was performed. Scd5p contains a PP1 binding site, a 3-repeat region of 20 amino acids (3R), and a 9-repeat region of 12 amino acids (9R). We found that the 9R is critical for cortical localization of Scd5p, but cortical recruitment is not essential for Scd5p's function in actin organization and endocytosis. We propose that Scd5p can target PP1 to endocytic factors in the cytoplasm that have been disassembled and/or inactivated by phosphorylation. We also found that Scd5p undergoes nuclear-cytoplasmic shuttling in a Crm1p-dependent manner. Scd5p-DeltaCT lacking the 9R region and its nuclear export signal (NES) accumulates in the nucleus, causing cortical actin and endocytic defects. Cytoplasmic localization and function of Scd5p-DeltaCT is restored by NES addition. However, removal of Scd5p's nuclear localization signal prevents nuclear entry, but endocytosis and actin organization remain relatively normal. These results indicate that nuclear-cytoplasmic shuttling is not required for regulation of Scd5p's cortical function and suggest that Scd5p has an independent nuclear function.
Collapse
Affiliation(s)
- Ji Suk Chang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
36
|
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005; 5:2819-38. [PMID: 15942958 DOI: 10.1002/pmic.200401108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics methods were used to characterize proteins that change their form or abundance in the nucleus of NRK49F rat kidney fibroblasts during prolonged hypoxia (1% O(2), 12 h). Of the 791 proteins that were monitored, about 20% showed detectable changes. The 51 most abundant proteins were identified by mass spectrometry. Changes in nuclear receptor transcription factors (THRalpha1, RORalpha4, HNF4alpha, NUR77), other transcription factors (GATA1, AP-2alpha, OCT1, ATF6alpha, ZFP161, ZNF354A, PDCD2), and transcription cofactors (PC4, PCAF, MTA1, TCEA1, JMY) are indicative of major, co-ordinated changes in transcription. Proteins involved in DNA repair/recombination, ribosomal RNA synthesis, RNA processing, nuclear transport, nuclear organization, protein translation, glycolysis, lipid metabolism, several protein kinases (PKCdelta, MAP3K4, GRK3), as well as proteins with no established functional role were also observed. The observed proteins suggest nuclear regulatory roles for proteins involved in cytosolic processes such as glycolysis and fatty acid metabolism, and roles in overall nuclear structure/organization for proteins previously associated with meiosis and/or spermatogenesis (synaptonemal complex proteins 1 and 2 (SYCP1, SYCP2), meiosis-specific nuclear structural protein 1 (MNS1), LMNC2, zinc finger protein 99 (ZFP99)). Proteins associated with cytoplasmic membrane functions (ACTN4, hyaluronan mediated motility receptor (RHAMM), VLDLR, GRK3) and/or endocytosis (DNM2) were also seen. For 30% of the identified proteins, new isoforms indicative of alternative transcription were detected (e.g., GATA1, ATF6alpha, MTA1, MLH1, MYO1C, UBF, SYCP2, EIF3S10, MAP3K4, ZFP99). Comparison with proteins involved in cell death, cancer, and testis/meiosis/spermatogenesis suggests commonalities, which may reflect fundamental mechanisms for down-regulation of cellular function.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Medicine, Rayne Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|
37
|
Naslavsky N, Rahajeng J, Sharma M, Jovic M, Caplan S. Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol Biol Cell 2005; 17:163-77. [PMID: 16251358 PMCID: PMC1345656 DOI: 10.1091/mbc.e05-05-0466] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Eps15 homology domain (EHD) 1 enables membrane recycling by controlling the exit of internalized molecules from the endocytic recycling compartment (ERC) en route to the plasma membrane, similar to the role described for Rab11. However, no physical or functional connection between Rab11 and EHD-family proteins has been demonstrated yet, and the mode by which they coordinate their regulatory activity remains unknown. Here, we demonstrate that EHD1 and EHD3 (the closest EHD1 paralog), bind to the Rab11-effector Rab11-FIP2 via EH-NPF interactions. The EHD/Rab11-FIP2 associations are affected by the ability of the EHD proteins to bind nucleotides, and Rab11-FIP2 is recruited to EHD-containing membranes. These results are consistent with a coordinated role for EHD1 and Rab11-FIP2 in regulating exit from the ERC. However, because no function has been attributed to EHD3, the significance of its interaction with Rab11-FIP2 remained unclear. Surprisingly, loss of EHD3 expression prevented the delivery of internalized transferrin and early endosomal proteins to the ERC, an effect differing from that described upon EHD1 knockdown. Moreover, the subcellular localization of Rab11-FIP2 and endogenous Rab11 were altered upon EHD3 knockdown, with both proteins absent from the ERC and retained in the cell periphery. The results presented herein promote a coordinated role for EHD proteins and Rab11-FIP2 in mediating endocytic recycling and provide evidence for the function of EHD3 in early endosome to ERC transport.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | |
Collapse
|
38
|
Li N, Xiang GS, Dokainish H, Ireton K, Elferink LA. The Listeria protein internalin B mimics hepatocyte growth factor-induced receptor trafficking. Traffic 2005; 6:459-73. [PMID: 15882443 DOI: 10.1111/j.1600-0854.2005.00290.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increased hepatocyte growth factor receptor (HGFR) signaling correlates closely with neoplastic invasion and metastatic potential of many human cancers. Hepatocyte growth factor receptor signaling is initiated by binding the physiological ligand HGF or the internalin B (InlB) protein of Listeria monocytogenes. Subsequent degradation of endocytosed HGFR terminates receptor signaling. Previously reported discrepancies in InlB and HGF-induced HGFR signaling could reflect differences in receptor internalization and degradation in response to these distinct ligands. We report that soluble InlB and HGF are mechanistically equivalent in triggering clathrin-dependent endocytosis and lysosomal degradation of HGFR. After internalization, InlB and HGF colocalize with Rab5, EEA1 and the transferrin receptor in classical early endosomes. Hepatocyte growth factor receptor internalization was prevented by overexpression of dominant negative mutants of dynamin 1 and epidermal growth factor phosphorylation substrate 15, but not caveolin 1, the GTPase Arf6 or the cholesterol-chelating drug Nystatin. Thus, HGFR internalization is principally clathrin-mediated and is not regulated by clathrin- independent pathways. Phosphatidylinositol 3-kinase signaling and HGF-regulated tyrosine kinase substrate were not required for ligand-triggered internalization of HGFR but were essential for subsequent lysosomal degradation. Thus, soluble InlB and HGF induce HGFR endocytosis and degradation by indistinguishable mechanisms, suggesting that InlB may be exploited to regulate pathogenic HGFR signaling.
Collapse
Affiliation(s)
- Ning Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA
| | | | | | | | | |
Collapse
|
39
|
Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol 2005; 79:5839-46. [PMID: 15827198 PMCID: PMC1082759 DOI: 10.1128/jvi.79.9.5839-5846.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human papillomavirus type 16 (HPV-16) E5 protein is a small, hydrophobic polypeptide that is expressed in virus-infected keratinocytes and alters receptor signaling pathways, apoptotic responses, and endosomal pH. Despite its ability to inhibit endosomal acidification, the HPV-16 E5 protein is found predominantly in the endoplasmic reticulum (ER), suggesting that its effect may be indirect and perhaps global. To determine whether E5 alters the pHs of additional intracellular compartments, we transduced human keratinocytes with a codon-optimized E5 vector and then quantified endosomal and trans-Golgi pHs using sensitive, compartment-specific, ratiometric pHluorin constructs. E5 protein increased endosomal pH from 5.9 to 6.9 but did not affect the normal trans-Golgi pH of 6.3. Confirming the lack of alteration in trans-Golgi pH, we observed no alterations in the acidification-dependent processing of the proH3 protein. C-terminal deletions of E5, which retained normal expression and localization in the ER, were defective for endosomal alkalization. Thus, E5 does not uniformly alkalinize intracellular compartments, and its C-terminal 10 amino acids appear to mediate interactions with critical ER targets that modulate proton pump function and/or localization.
Collapse
Affiliation(s)
- Gary L Disbrow
- Department of Pathology, Georgetown University Medical School, Basic Science Building, Room 113, 3900 Reservoir Rd., NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
40
|
Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M. Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 2004; 279:54849-61. [PMID: 15496406 DOI: 10.1074/jbc.m410444200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to its thirty or so core subunits, a number of accessory proteins associate with the 26 S proteasome presumably to assist in substrate degradation or to localize the enzyme within cells. Among these proteins is ecm29p, a 200-kDa yeast protein that contains numerous HEAT repeats as well as a putative VHS domain. Higher eukaryotes possess a well conserved homolog of yeast ecm29p, and we produced antibodies to three peptides in the human Ecm29 sequence. The antibodies show that Ecm29 is present exclusively on 26 S proteasomes in HeLa cells and that Ecm29 levels vary markedly among mouse organs. Confocal immunofluorescence microscopy localizes Ecm29 to the centrosome and a subset of secretory compartments including endosomes, the ER and the ERGIC. Ecm29 is up-regulated 2-3-fold in toxinresistant mutant CHO cells exhibiting increased rates of ER-associated degradation. Based on these results we propose that Ecm29 serves to couple the 26 S proteasome to secretory compartments engaged in quality control and to other sites of enhanced proteolysis.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Peripheral tolerance is an important strategy used by the immune system to prevent self-reactive lymphocytes from attacking host tissues. A variety of mechanisms contribute to peripheral tolerance, among them activation-induced cell death, suppression by regulatory T cells, and T cell anergy or unresponsiveness. Recent work has led to a better understanding of the cell-intrinsic program that establishes T cell anergy. A major insight is that during the induction phase of anergy, incomplete stimulation (T cell receptor stimulation without costimulation) leads via calcium influx to an altered gene expression program that includes up-regulation of several E3 ubiquitin ligases. When the anergic T cells contact antigen-presenting cells, intracellular signaling proteins are monoubiquitinated and targeted for lysosomal degradation, thus decreasing intracellular signaling and also resulting in decreased stability of the T cell-antigen-presenting cell contact. We propose a molecular program leading to T cell anergy and discuss other proteins that may play a role.
Collapse
Affiliation(s)
- Vigo Heissmeyer
- Department of Pathology, Harvard Medical School, and CBR Institute for Biomedical Research, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|