1
|
Saluja S, Tóth AL, Peter MG, Fondberg R, Tognetti A, Lundström JN. Congenital anosmia and subjective tactile function: A pilot study. Behav Brain Res 2025; 484:115487. [PMID: 39984129 DOI: 10.1016/j.bbr.2025.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/20/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Anosmia, the complete loss of olfactory perception, has been associated with sensory compensation in non-chemical senses such as vision and hearing, but its relationship with tactile perception remains unclear. This study investigates whether isolated congenital anosmia (ICA)-a rare condition in which individuals are born without a sense of smell but are otherwise healthy-is linked to heightened self-reported tactile sensitivity compared to healthy controls. Drawing on sensory compensation theory and anecdotal evidence from related studies, we hypothesized that individuals with ICA would report increased tactile sensitivity, particularly in response to discomfort. To test this hypothesis, we surveyed individuals with ICA (n = 40) and healthy controls (n = 40), matched for sex and age, using standardized questionnaires and a specially developed questionnaire focused on discomfort related to materials, food textures, stickiness, and pressure. Contrary to our pre-registered hypothesis, the results revealed no significant differences in overall self-reported touch sensitivity between the groups. However, exploratory analysis indicated that individuals with ICA exhibit greater sensitivity to temperature sensations and to overall tactile discomfort, specifically in response to pressure and food textures, compared to controls. We propose that individuals with ICA may compensate for their olfactory loss through heightened sensitivity to certain tactile stimuli related to discomfort, as both touch and olfaction play overlapping roles in the detection of aversive stimuli. These exploratory findings underscore the need for further investigation into the sensory compensation mechanisms of olfaction on touch.
Collapse
Affiliation(s)
- Supreet Saluja
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Laura Tóth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Moa G Peter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Robin Fondberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Tognetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; CEE-M, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Monell Chemical Senses Center, Philadephia, USA.
| |
Collapse
|
2
|
Băluțoiu MA, Morar A, Moldoveanu A, Lăpușteanu A, Moldoveanu F, Anghel AM. VIP SpaceNav - smart buildings for people with visual impairments. Disabil Rehabil Assist Technol 2025:1-19. [PMID: 40084624 DOI: 10.1080/17483107.2025.2478484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
People with visual impairments have difficulties in navigating indoor spaces and identifying elements of interest in the environment. There are a plethora of assistive systems that address this problem, but most of them are either expensive, depend on specialized hardware or lack intuitiveness. VIP SpaceNav is a platform for low-cost, intuitive configuration and safe navigation, intended for people with visual impairments. The system's content management system stores a 3D model of the building, together with localization information and elements of interest. The mobile application dedicated to users with visual impairments runs a localization component, as well as an obstacle detection module, providing navigation cues and information about points of interest in the vicinity, with the help of text-to-speech and audio signals. This paper presents a concept of indoor guidance for people with visual impairments and a first materialization of the prototype, based on state-of-the-art localization and spatial sounds. It also describes the piloting of the system in complex scenarios in a real building, demonstrating its potential of deployment in any indoor space, with minimal financial and time resources.
Collapse
Affiliation(s)
- Maria-Anca Băluțoiu
- Department of Computers, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Anca Morar
- Department of Computers, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Alin Moldoveanu
- Department of Computers, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Andrei Lăpușteanu
- Department of Computers, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Florica Moldoveanu
- Department of Computers, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Ana Magdalena Anghel
- Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computers, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Kolarik AJ, Moore BCJ. Principles governing the effects of sensory loss on human abilities: An integrative review. Neurosci Biobehav Rev 2025; 169:105986. [PMID: 39710017 DOI: 10.1016/j.neubiorev.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Blindness or deafness can significantly influence sensory abilities in intact modalities, affecting communication, orientation and navigation. Explanations for why certain abilities are enhanced and others degraded include: crossmodal cortical reorganization enhances abilities by providing additional neural processing resources; and sensory processing is impaired for tasks where calibration from the normally intact sense is required for good performance. However, these explanations are often specific to tasks or modalities, not accounting for why task-dependent enhancement or degradation are observed. This paper investigates whether sensory systems operate according to a theoretical framework comprising seven general principles (the perceptual restructuring hypothesis) spanning the various modalities. These principles predict whether an ability will be enhanced or degraded following sensory loss. Evidence from a wide range of studies is discussed, to assess the validity of the principles across different combinations of impaired sensory modalities (deafness or blindness) and intact modalities (vision, audition, touch, olfaction). It is concluded that sensory systems do operate broadly according to the principles of the framework, but with some exceptions.
Collapse
Affiliation(s)
- Andrew J Kolarik
- School of Psychology, University of East Anglia, Norwich, United Kingdom; Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.
| | - Brian C J Moore
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Jendrichovsky P, Lee HK, Kanold PO. Brief periods of visual deprivation in adults increase performance on auditory tasks. iScience 2024; 27:110936. [PMID: 39759077 PMCID: PMC11700649 DOI: 10.1016/j.isci.2024.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 09/09/2024] [Indexed: 01/07/2025] Open
Abstract
Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 weeks) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing. We tested if DE enhances the ability of adult mice to detect sounds. We trained and continuously evaluated the behavioral performance of mice in control and DE conditions using automated home-cage training. Consistent with age-related peripheral hearing loss present in C57BL/6J mice, we observed decreased performance for high-frequency sounds with age, which was reduced by DE. In CBA mice with preserved peripheral hearing, we also found that DE showed modest auditory performance improvements in low and mid frequencies over time compared to the control.
Collapse
Affiliation(s)
- Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hey-Kyoung Lee
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli NDI, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli NDI, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Stroh AL, Radziun D, Korczyk M, Crucianelli L, Ehrsson HH, Szwed M. Blind individuals' enhanced ability to sense their own heartbeat is related to the thickness of their occipital cortex. Cereb Cortex 2024; 34:bhae324. [PMID: 39152673 PMCID: PMC11329624 DOI: 10.1093/cercor/bhae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/19/2024] Open
Abstract
Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Maksymilian Korczyk
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
- Department of Biological and Experimental Psychology, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
6
|
Pardhan S, Raman R, Moore BCJ, Cirstea S, Velu S, Kolarik AJ. Effect of early versus late onset of partial visual loss on judgments of auditory distance. Optom Vis Sci 2024; 101:393-398. [PMID: 38990237 DOI: 10.1097/opx.0000000000002125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
SIGNIFICANCE It is important to know whether early-onset vision loss and late-onset vision loss are associated with differences in the estimation of distances of sound sources within the environment. People with vision loss rely heavily on auditory cues for path planning, safe navigation, avoiding collisions, and activities of daily living. PURPOSE Loss of vision can lead to substantial changes in auditory abilities. It is unclear whether differences in sound distance estimation exist in people with early-onset partial vision loss, late-onset partial vision loss, and normal vision. We investigated distance estimates for a range of sound sources and auditory environments in groups of participants with early- or late-onset partial visual loss and sighted controls. METHODS Fifty-two participants heard static sounds with virtual distances ranging from 1.2 to 13.8 m within a simulated room. The room simulated either anechoic (no echoes) or reverberant environments. Stimuli were speech, music, or noise. Single sounds were presented, and participants reported the estimated distance of the sound source. Each participant took part in 480 trials. RESULTS Analysis of variance showed significant main effects of visual status (p<0.05) environment (reverberant vs. anechoic, p<0.05) and also of the stimulus (p<0.05). Significant differences (p<0.05) were shown in the estimation of distances of sound sources between early-onset visually impaired participants and sighted controls for closer distances for all conditions except the anechoic speech condition and at middle distances for all conditions except the reverberant speech and music conditions. Late-onset visually impaired participants and sighted controls showed similar performance (p>0.05). CONCLUSIONS The findings suggest that early-onset partial vision loss results in significant changes in judged auditory distance in different environments, especially for close and middle distances. Late-onset partial visual loss has less of an impact on the ability to estimate the distance of sound sources. The findings are consistent with a theoretical framework, the perceptual restructuring hypothesis, which was recently proposed to account for the effects of vision loss on audition.
Collapse
Affiliation(s)
| | | | | | | | - Saranya Velu
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya Eye Hospital, Chennai, India
| | | |
Collapse
|
7
|
Jendrichovsky P, Lee HK, Kanold PO. Dark exposure reduces high-frequency hearing loss in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592252. [PMID: 38746420 PMCID: PMC11092591 DOI: 10.1101/2024.05.02.592252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 week) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing. We tested if DE enhances the ability of adult mice to detect sounds. We trained and continuously evaluated the behavioral performance of mice in control and DE conditions using automated home-cage training. Consistent with age-related peripheral hearing loss present in C57BL/6J mice, we observed decreased performance for high-frequency sounds with age, which was reduced by DE. In CBA mice with preserved peripheral hearing, we also found that DE enhanced auditory performance in low and mid frequencies over time compared to the control.
Collapse
Affiliation(s)
- Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, USA
| | - Hey-Kyoung Lee
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, USA
- Kavli NDI, Johns Hopkins University School of Medicine; Baltimore, USA
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University; Baltimore, USA
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, USA
- Kavli NDI, Johns Hopkins University School of Medicine; Baltimore, USA
| |
Collapse
|
8
|
Tomasello R, Carriere M, Pulvermüller F. The impact of early and late blindness on language and verbal working memory: A brain-constrained neural model. Neuropsychologia 2024; 196:108816. [PMID: 38331022 DOI: 10.1016/j.neuropsychologia.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Neural circuits related to language exhibit a remarkable ability to reorganize and adapt in response to visual deprivation. Particularly, early and late blindness induce distinct neuroplastic changes in the visual cortex, repurposing it for language and semantic processing. Interestingly, these functional changes provoke a unique cognitive advantage - enhanced verbal working memory, particularly in early blindness. Yet, the underlying neuromechanisms and the impact on language and memory-related circuits remain not fully understood. Here, we applied a brain-constrained neural network mimicking the structural and functional features of the frontotemporal-occipital cortices, to model conceptual acquisition in early and late blindness. The results revealed differential expansion of conceptual-related neural circuits into deprived visual areas depending on the timing of visual loss, which is most prominent in early blindness. This neural recruitment is fundamentally governed by the biological principles of neural circuit expansion and the absence of uncorrelated sensory input. Critically, the degree of these changes is constrained by the availability of neural matter previously allocated to visual experiences, as in the case of late blindness. Moreover, we shed light on the implication of visual deprivation on the neural underpinnings of verbal working memory, revealing longer reverberatory neural activity in 'blind models' as compared to the sighted ones. These findings provide a better understanding of the interplay between visual deprivations, neuroplasticity, language processing and verbal working memory.
Collapse
Affiliation(s)
- Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany.
| | - Maxime Carriere
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10117, Berlin, Germany; Einstein Center for Neurosciences, 10117, Berlin, Germany
| |
Collapse
|
9
|
Goicke S, Denk F, Jürgens T. Auditory Spatial Bisection of Blind and Normally Sighted Individuals in Free Field and Virtual Acoustics. Trends Hear 2024; 28:23312165241230947. [PMID: 38361245 PMCID: PMC10874137 DOI: 10.1177/23312165241230947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Sound localization is an important ability in everyday life. This study investigates the influence of vision and presentation mode on auditory spatial bisection performance. Subjects were asked to identify the smaller perceived distance between three consecutive stimuli that were either presented via loudspeakers (free field) or via headphones after convolution with generic head-related impulse responses (binaural reproduction). Thirteen azimuthal sound incidence angles on a circular arc segment of ±24° at a radius of 3 m were included in three regions of space (front, rear, and laterally left). Twenty normally sighted (measured both sighted and blindfolded) and eight blind persons participated. Results showed no significant differences with respect to visual condition, but strong effects of sound direction and presentation mode. Psychometric functions were steepest in frontal space and indicated median spatial bisection thresholds of 11°-14°. Thresholds increased significantly in rear (11°-17°) and laterally left (20°-28°) space in free field. Individual pinna and torso cues, as available only in free field presentation, improved the performance of all participants compared to binaural reproduction. Especially in rear space, auditory spatial bisection thresholds were three to four times higher (i.e., poorer) using binaural reproduction than in free field. The results underline the importance of individual auditory spatial cues for spatial bisection, irrespective of access to vision, which indicates that vision may not be strictly necessary to calibrate allocentric spatial hearing.
Collapse
Affiliation(s)
- Stefanie Goicke
- Institute of Acoustics, Technische Hochschule Lübeck (University of Applied Sciences Lübeck), Lübeck, Germany
- Research Unit for ORL—Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florian Denk
- German Institute of Hearing Aids, Lübeck, Germany
| | - Tim Jürgens
- Institute of Acoustics, Technische Hochschule Lübeck (University of Applied Sciences Lübeck), Lübeck, Germany
| |
Collapse
|
10
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Koehler H, Croy I, Oleszkiewicz A. Late Blindness and Deafness are Associated with Decreased Tactile Sensitivity, But Early Blindness is Not. Neuroscience 2023; 526:164-174. [PMID: 37385331 DOI: 10.1016/j.neuroscience.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Perceptual experience is shaped by a complex interaction between our sensory systems in which each sense conveys information on specific properties of our surroundings. This multisensory processing of complementary information improves the accuracy of our perceptual judgments and leads to more precise and faster reactions. Sensory impairment or loss in one modality leads to information deficiency that can impact other senses in various ways. For early auditory or visual loss, impairment and/or compensatory increase of the sensitivity of other senses are equally well described. Investigating individuals with deafness (N = 73), early (N = 51), late blindness (N = 49) and corresponding controls, we compared tactile sensitivity using the standard monofilament test on two locations, the finger and handback. Results indicate lower tactile sensitivity in people with deafness and late blindness but not in people with early blindness compared to respective controls, irrespective of stimulation location, gender, and age. Results indicate that neither sensory compensation nor simple use-dependency or a hindered development of the tactile sensory system is sufficient to explain changes in somatosensation after the sensory loss but that a complex interaction of effects is present.
Collapse
Affiliation(s)
- Hanna Koehler
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Biomagnetic Center, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany.
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany; Department of Psychotherapy and Psychosomatic Medicine, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anna Oleszkiewicz
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Psychology, University of Wrocław, ul. Dawida 1, 50-527 Wroclaw, Poland
| |
Collapse
|
12
|
Breitinger E, Dundon NM, Pokorny L, Wunram HL, Roessner V, Bender S. Contingent negative variation to tactile stimuli - differences in anticipatory and preparatory processes between participants with and without blindness. Cereb Cortex 2023; 33:7582-7594. [PMID: 36977633 DOI: 10.1093/cercor/bhad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
People who are blind demonstrate remarkable abilities within the spared senses and compensatory enhancement of cognitive skills, underscored by substantial plastic reorganization in relevant neural areas. However, little is known about whether people with blindness form top-down models of the world on short timescales more efficiently to guide goal-oriented behavior. This electroencephalography study investigates this hypothesis at the neurophysiological level, focusing on contingent negative variation (CNV) as a marker of anticipatory and preparatory processes prior to expected events. In sum, 20 participants with blindness and 27 sighted participants completed a classic CNV task and a memory CNV task, both containing tactile stimuli to exploit the expertise of the former group. Although the reaction times in the classic CNV task did not differ between groups, participants who are blind reached higher performance rates in the memory task. This superior performance co-occurred with a distinct neurophysiological profile, relative to controls: greater late CNV amplitudes over central areas, suggesting enhanced stimulus expectancy and motor preparation prior to key events. Controls, in contrast, recruited more frontal sites, consistent with inefficient sensory-aligned control. We conclude that in more demanding cognitive contexts exploiting the spared senses, people with blindness efficiently generate task-relevant internal models to facilitate behavior.
Collapse
Affiliation(s)
- Eva Breitinger
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Neil M Dundon
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Germany
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Heidrun L Wunram
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Faculty of Medicine, University Hospital C. G. Carus, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| |
Collapse
|
13
|
Morelli F, Schiatti L, Cappagli G, Martolini C, Gori M, Signorini S. Clinical assessment of the TechArm system on visually impaired and blind children during uni- and multi-sensory perception tasks. Front Neurosci 2023; 17:1158438. [PMID: 37332868 PMCID: PMC10272406 DOI: 10.3389/fnins.2023.1158438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 06/20/2023] Open
Abstract
We developed the TechArm system as a novel technological tool intended for visual rehabilitation settings. The system is designed to provide a quantitative assessment of the stage of development of perceptual and functional skills that are normally vision-dependent, and to be integrated in customized training protocols. Indeed, the system can provide uni- and multisensory stimulation, allowing visually impaired people to train their capability of correctly interpreting non-visual cues from the environment. Importantly, the TechArm is suitable to be used by very young children, when the rehabilitative potential is maximal. In the present work, we validated the TechArm system on a pediatric population of low-vision, blind, and sighted children. In particular, four TechArm units were used to deliver uni- (audio or tactile) or multi-sensory stimulation (audio-tactile) on the participant's arm, and subject was asked to evaluate the number of active units. Results showed no significant difference among groups (normal or impaired vision). Overall, we observed the best performance in tactile condition, while auditory accuracy was around chance level. Also, we found that the audio-tactile condition is better than the audio condition alone, suggesting that multisensory stimulation is beneficial when perceptual accuracy and precision are low. Interestingly, we observed that for low-vision children the accuracy in audio condition improved proportionally to the severity of the visual impairment. Our findings confirmed the TechArm system's effectiveness in assessing perceptual competencies in sighted and visually impaired children, and its potential to be used to develop personalized rehabilitation programs for people with visual and sensory impairments.
Collapse
Affiliation(s)
- Federica Morelli
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lucia Schiatti
- Computer Science and Artificial Intelligence Lab and Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Boston, MA, United States
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Cappagli
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Chiara Martolini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Oleszkiewicz A, Schmidt P, Smith B, Spence C, Hummel T. Effects of blindness and anosmia on auditory discrimination of temperature and carbonation of liquids. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
16
|
Finocchietti S, Esposito D, Gori M. Monaural auditory spatial abilities in early blind individuals. Iperception 2023; 14:20416695221149638. [PMID: 36861104 PMCID: PMC9969445 DOI: 10.1177/20416695221149638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
Early blind individuals can localize single sound sources better than sighted participants, even under monaural conditions. Yet, in binaural listening, they struggle with understanding the distances between three different sounds. The latter ability has never been tested under monaural conditions. We investigated the performance of eight early blind and eight blindfolded healthy individuals in monaural and binaural listening during two audio-spatial tasks. In the localization task, a single sound was played in front of participants who needed to localize it properly. In the auditory bisection task, three consecutive sounds were played from different spatial positions, and participants reported which sound the second one was closer to. Only early blind individuals improved their performance in the monaural bisection, while no statistical difference was present for the localization task. We concluded that early blind individuals show superior ability in using spectral cues under monaural conditions.
Collapse
Affiliation(s)
| | - Davide Esposito
- Davide Esposito, Unit for Visually Impaired
People, Italian Institute of Technology, 16131, Genoa, Italy.
| | | |
Collapse
|
17
|
Maimon A, Wald IY, Ben Oz M, Codron S, Netzer O, Heimler B, Amedi A. The Topo-Speech sensory substitution system as a method of conveying spatial information to the blind and vision impaired. Front Hum Neurosci 2023; 16:1058093. [PMID: 36776219 PMCID: PMC9909096 DOI: 10.3389/fnhum.2022.1058093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
Humans, like most animals, integrate sensory input in the brain from different sensory modalities. Yet humans are distinct in their ability to grasp symbolic input, which is interpreted into a cognitive mental representation of the world. This representation merges with external sensory input, providing modality integration of a different sort. This study evaluates the Topo-Speech algorithm in the blind and visually impaired. The system provides spatial information about the external world by applying sensory substitution alongside symbolic representations in a manner that corresponds with the unique way our brains acquire and process information. This is done by conveying spatial information, customarily acquired through vision, through the auditory channel, in a combination of sensory (auditory) features and symbolic language (named/spoken) features. The Topo-Speech sweeps the visual scene or image and represents objects' identity by employing naming in a spoken word and simultaneously conveying the objects' location by mapping the x-axis of the visual scene or image to the time it is announced and the y-axis by mapping the location to the pitch of the voice. This proof of concept study primarily explores the practical applicability of this approach in 22 visually impaired and blind individuals. The findings showed that individuals from both populations could effectively interpret and use the algorithm after a single training session. The blind showed an accuracy of 74.45%, while the visually impaired had an average accuracy of 72.74%. These results are comparable to those of the sighted, as shown in previous research, with all participants above chance level. As such, we demonstrate practically how aspects of spatial information can be transmitted through non-visual channels. To complement the findings, we weigh in on debates concerning models of spatial knowledge (the persistent, cumulative, or convergent models) and the capacity for spatial representation in the blind. We suggest the present study's findings support the convergence model and the scenario that posits the blind are capable of some aspects of spatial representation as depicted by the algorithm comparable to those of the sighted. Finally, we present possible future developments, implementations, and use cases for the system as an aid for the blind and visually impaired.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Sophie Codron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Ophir Netzer
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Ramat Gan, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
18
|
Dong B, Chen A, Gu Z, Sun Y, Zhang X, Tian X. Methods for measuring egocentric distance perception in visual modality. Front Psychol 2023; 13:1061917. [PMID: 36710778 PMCID: PMC9874321 DOI: 10.3389/fpsyg.2022.1061917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Egocentric distance perception has been widely concerned by researchers in the field of spatial perception due to its significance in daily life. The frame of perception involves the perceived distance from an observer to an object. Over the years, researchers have been searching for an optimal way to measure the perceived distance and their contribution constitutes a critical aspect of the field. This paper summarizes the methodological findings and divides the measurement methods for egocentric distance perception into three categories according to the behavior types. The first is Perceptional Method, including successive equal-appearing intervals of distance judgment measurement, verbal report, and perceptual distance matching task. The second is Directed Action Method, including blind walking, blind-walking gesturing, blindfolded throwing, and blind rope pulling. The last one is Indirect Action Method, including triangulation-by-pointing and triangulation-by-walking. In the meantime, we summarize each method's procedure, core logic, scope of application, advantages, and disadvantages. In the end, we discuss the future concerns of egocentric distance perception.
Collapse
Affiliation(s)
- Bo Dong
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Airui Chen
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Zhengyin Gu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Sun
- School of Education, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Xiuling Zhang
- School of Psychology, Northeast Normal University, Changchun, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Xiaoming Tian
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| |
Collapse
|
19
|
Mamus E, Speed LJ, Rissman L, Majid A, Özyürek A. Lack of Visual Experience Affects Multimodal Language Production: Evidence From Congenitally Blind and Sighted People. Cogn Sci 2023; 47:e13228. [PMID: 36607157 PMCID: PMC10078191 DOI: 10.1111/cogs.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023]
Abstract
The human experience is shaped by information from different perceptual channels, but it is still debated whether and how differential experience influences language use. To address this, we compared congenitally blind, blindfolded, and sighted people's descriptions of the same motion events experienced auditorily by all participants (i.e., via sound alone) and conveyed in speech and gesture. Comparison of blind and sighted participants to blindfolded participants helped us disentangle the effects of a lifetime experience of being blind versus the task-specific effects of experiencing a motion event by sound alone. Compared to sighted people, blind people's speech focused more on path and less on manner of motion, and encoded paths in a more segmented fashion using more landmarks and path verbs. Gestures followed the speech, such that blind people pointed to landmarks more and depicted manner less than sighted people. This suggests that visual experience affects how people express spatial events in the multimodal language and that blindness may enhance sensitivity to paths of motion due to changes in event construal. These findings have implications for the claims that language processes are deeply rooted in our sensory experiences.
Collapse
Affiliation(s)
- Ezgi Mamus
- Centre for Language Studies, Radboud University.,Max Planck Institute for Psycholinguistics
| | | | - Lilia Rissman
- Department of Psychology, University of Wisconsin - Madison
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford
| | - Aslı Özyürek
- Centre for Language Studies, Radboud University.,Max Planck Institute for Psycholinguistics.,Donders Center for Cognition, Radboud University
| |
Collapse
|
20
|
Kim HN, Sutharson SJ. Individual differences in emotional intelligence skills of people with visual impairment and loneliness amid the COVID-19 pandemic. BRITISH JOURNAL OF VISUAL IMPAIRMENT 2023; 41:20-32. [PMID: 36605534 PMCID: PMC9791000 DOI: 10.1177/02646196211013860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In response to the novel coronavirus (COVID-19) pandemic, public health interventions such as social distancing and stay-at-home orders have widely been implemented, which is anticipated to contribute to reducing the spread of COVID-19. On the contrary, there is a concern that the public health interventions may increase the level of loneliness. Loneliness and social isolation are public health risks, closely associated with serious medical conditions. As COVID-19 is new to us today, little is known about emotional well-being among people with visual impairment during the COVID-19 pandemic. To address the knowledge gap, this study conducted phone interviews with a convenience sample of 31 people with visual impairment. The interview incorporated the University of California, Los Angeles (UCLA) Loneliness Scale (version 3) and the trait meta-mood scale (TMMS) to measure loneliness and emotional intelligence skills, respectively. This study found that people with visual impairment were vulnerable to the feeling of loneliness during the COVID-19 pandemic and showed individual differences in emotional intelligence skills by different degrees of loneliness. Researchers and health professionals should consider offering adequate coping strategies to those with visual impairment amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hyung Nam Kim
- Hyung Nam Kim, North Carolina Agricultural
and Technical State University, 1601 East Market Street, Greensboro, NC 27411,
USA.
| | | |
Collapse
|
21
|
Bang JW, Chan RW, Parra C, Murphy MC, Schuman JS, Nau AC, Chan KC. Diverging patterns of plasticity in the nucleus basalis of Meynert in early- and late-onset blindness. Brain Commun 2023; 5:fcad119. [PMID: 37101831 PMCID: PMC10123399 DOI: 10.1093/braincomms/fcad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Plasticity in the brain is impacted by an individual's age at the onset of the blindness. However, what drives the varying degrees of plasticity remains largely unclear. One possible explanation attributes the mechanisms for the differing levels of plasticity to the cholinergic signals originating in the nucleus basalis of Meynert. This explanation is based on the fact that the nucleus basalis of Meynert can modulate cortical processes such as plasticity and sensory encoding through its widespread cholinergic projections. Nevertheless, there is no direct evidence indicating that the nucleus basalis of Meynert undergoes plastic changes following blindness. Therefore, using multiparametric magnetic resonance imaging, we examined if the structural and functional properties of the nucleus basalis of Meynert differ between early blind, late blind and sighted individuals. We observed that early and late blind individuals had a preserved volumetric size and cerebrovascular reactivity in the nucleus basalis of Meynert. However, we observed a reduction in the directionality of water diffusion in both early and late blind individuals compared to sighted individuals. Notably, the nucleus basalis of Meynert presented diverging patterns of functional connectivity between early and late blind individuals. This functional connectivity was enhanced at both global and local (visual, language and default-mode networks) levels in the early blind individuals, but there were little-to-no changes in the late blind individuals when compared to sighted controls. Furthermore, the age at onset of blindness predicted both global and local functional connectivity. These results suggest that upon reduced directionality of water diffusion in the nucleus basalis of Meynert, cholinergic influence may be stronger for the early blind compared to the late blind individuals. Our findings are important to unravelling why early blind individuals present stronger and more widespread cross-modal plasticity compared to late blind individuals.
Collapse
Affiliation(s)
- Ji Won Bang
- Correspondence may also be addressed to: Ji Won Bang, PhD.
| | - Russell W Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
| | - Matthew C Murphy
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY 10003, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Amy C Nau
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Korb and Associates, Boston, MA 02215, USA
| | - Kevin C Chan
- Correspondence to: Kevin C. Chan, PhD, Departments of Ophthalmology and Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University. 222 E 41st Street, Room 362, New York, NY 10017, USA.
| |
Collapse
|
22
|
Arend I, Yuen K, Yizhar O, Chebat DR, Amedi A. Gyrification in relation to cortical thickness in the congenitally blind. Front Neurosci 2022; 16:970878. [DOI: 10.3389/fnins.2022.970878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Greater cortical gyrification (GY) is linked with enhanced cognitive abilities and is also negatively related to cortical thickness (CT). Individuals who are congenitally blind (CB) exhibits remarkable functional brain plasticity which enables them to perform certain non-visual and cognitive tasks with supranormal abilities. For instance, extensive training using touch and audition enables CB people to develop impressive skills and there is evidence linking these skills to cross-modal activations of primary visual areas. There is a cascade of anatomical, morphometric and functional-connectivity changes in non-visual structures, volumetric reductions in several components of the visual system, and CT is also increased in CB. No study to date has explored GY changes in this population, and no study has explored how variations in CT are related to GY changes in CB. T1-weighted 3D structural magnetic resonance imaging scans were acquired to examine the effects of congenital visual deprivation in cortical structures in a healthy sample of 11 CB individuals (6 male) and 16 age-matched sighted controls (SC) (10 male). In this report, we show for the first time an increase in GY in several brain areas of CB individuals compared to SC, and a negative relationship between GY and CT in the CB brain in several different cortical areas. We discuss the implications of our findings and the contributions of developmental factors and synaptogenesis to the relationship between CT and GY in CB individuals compared to SC. F.
Collapse
|
23
|
Martolini C, Amadeo MB, Campus C, Cappagli G, Gori M. Effects of audio-motor training on spatial representations in long-term late blindness. Neuropsychologia 2022; 176:108391. [DOI: 10.1016/j.neuropsychologia.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
24
|
Sabourin CJ, Merrikhi Y, Lomber SG. Do blind people hear better? Trends Cogn Sci 2022; 26:999-1012. [PMID: 36207258 DOI: 10.1016/j.tics.2022.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
For centuries, anecdotal evidence such as the perfect pitch of the blind piano tuner or blind musician has supported the notion that individuals who have lost their sight early in life have superior hearing abilities compared with sighted people. Recently, auditory psychophysical and functional imaging studies have identified that specific auditory enhancements in the early blind can be linked to activation in extrastriate visual cortex, suggesting crossmodal plasticity. Furthermore, the nature of the sensory reorganization in occipital cortex supports the concept of a task-based functional cartography for the cerebral cortex rather than a sensory-based organization. In total, studies of early-blind individuals provide valuable insights into mechanisms of cortical plasticity and principles of cerebral organization.
Collapse
Affiliation(s)
- Carina J Sabourin
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yaser Merrikhi
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephen G Lomber
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Psychology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
25
|
Bleau M, Paré S, Chebat DR, Kupers R, Nemargut JP, Ptito M. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front Neurosci 2022; 16:1010354. [PMID: 36340755 PMCID: PMC9630591 DOI: 10.3389/fnins.2022.1010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.
Collapse
Affiliation(s)
- Maxime Bleau
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel, Israel
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Institute of Neuroscience, Faculty of Medicine, Université de Louvain, Brussels, Belgium
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Maurice Ptito,
| |
Collapse
|
26
|
Senna I, Piller S, Gori M, Ernst M. The power of vision: calibration of auditory space after sight restoration from congenital cataracts. Proc Biol Sci 2022; 289:20220768. [PMID: 36196538 PMCID: PMC9532985 DOI: 10.1098/rspb.2022.0768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Early visual deprivation typically results in spatial impairments in other sensory modalities. It has been suggested that, since vision provides the most accurate spatial information, it is used for calibrating space in the other senses. Here we investigated whether sight restoration after prolonged early onset visual impairment can lead to the development of more accurate auditory space perception. We tested participants who were surgically treated for congenital dense bilateral cataracts several years after birth. In Experiment 1 we assessed participants' ability to understand spatial relationships among sounds, by asking them to spatially bisect three consecutive, laterally separated sounds. Participants performed better after surgery than participants tested before. However, they still performed worse than sighted controls. In Experiment 2, we demonstrated that single sound localization in the two-dimensional frontal plane improves quickly after surgery, approaching performance levels of sighted controls. Such recovery seems to be mediated by visual acuity, as participants gaining higher post-surgical visual acuity performed better in both experiments. These findings provide strong support for the hypothesis that vision calibrates auditory space perception. Importantly, this also demonstrates that this process can occur even when vision is restored after years of visual deprivation.
Collapse
Affiliation(s)
- Irene Senna
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| | - Sophia Piller
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marc Ernst
- Applied Cognitive Psychology, Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| |
Collapse
|
27
|
Mortazavi M, Aigner K, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J. Intramodal cortical plastic changes after moderate visual impairment in human amblyopia. iScience 2022; 25:104871. [PMID: 36034215 PMCID: PMC9403333 DOI: 10.1016/j.isci.2022.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 10/28/2022] Open
|
28
|
Lifelong changes of neurotransmitter receptor expression and debilitation of hippocampal synaptic plasticity following early postnatal blindness. Sci Rep 2022; 12:9142. [PMID: 35650390 PMCID: PMC9160005 DOI: 10.1038/s41598-022-13127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
In the weeks immediately after onset of sensory loss, extensive reorganization of both the cortex and hippocampus occurs. Two fundamental characteristics comprise widespread changes in the relative expression of GABA and glutamate receptors and debilitation of hippocampal synaptic plasticity. Here, we explored whether recovery from adaptive changes in the expression of plasticity-related neurotransmitter receptors and hippocampal synaptic plasticity occurs in the time-period of up to 12 months after onset of sensory loss. We compared receptor expression in CBA/J mice that develop hereditary blindness, with CBA/CaOlaHsd mice that have intact vision and no deficits in other sensory modalities throughout adulthood. GluN1-subunit expression was reduced and the GluN2A:GluN2B ratio was persistently altered in cortex and hippocampus. GABA-receptor expression was decreased and metabotropic glutamate receptor expression was altered. Hippocampal synaptic plasticity was persistently compromised in vivo. But although LTP in blind mice was chronically impaired throughout adulthood, a recovery of the early phase of LTP became apparent when the animals reached 12 months of age. These data show that cortical and hippocampal adaptation to early postnatal blindness progresses into advanced adulthood and is a process that compromises hippocampal function. A partial recovery of hippocampal synaptic plasticity emerges in advanced adulthood, however.
Collapse
|
29
|
Kim HN. The frequency of facial muscles engaged in expressing emotions in people with visual disabilities via cloud-based video communication. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2022. [DOI: 10.1080/1463922x.2022.2081374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hyung Nam Kim
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, NC, USA
| |
Collapse
|
30
|
Setti W, Cuturi LF, Cocchi E, Gori M. Spatial Memory and Blindness: The Role of Visual Loss on the Exploration and Memorization of Spatialized Sounds. Front Psychol 2022; 13:784188. [PMID: 35686077 PMCID: PMC9171105 DOI: 10.3389/fpsyg.2022.784188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Spatial memory relies on encoding, storing, and retrieval of knowledge about objects’ positions in their surrounding environment. Blind people have to rely on sensory modalities other than vision to memorize items that are spatially displaced, however, to date, very little is known about the influence of early visual deprivation on a person’s ability to remember and process sound locations. To fill this gap, we tested sighted and congenitally blind adults and adolescents in an audio-spatial memory task inspired by the classical card game “Memory.” In this research, subjects (blind, n = 12; sighted, n = 12) had to find pairs among sounds (i.e., animal calls) displaced on an audio-tactile device composed of loudspeakers covered by tactile sensors. To accomplish this task, participants had to remember the spatialized sounds’ position and develop a proper mental spatial representation of their locations. The test was divided into two experimental conditions of increasing difficulty dependent on the number of sounds to be remembered (8 vs. 24). Results showed that sighted participants outperformed blind participants in both conditions. Findings were discussed considering the crucial role of visual experience in properly manipulating auditory spatial representations, particularly in relation to the ability to explore complex acoustic configurations.
Collapse
Affiliation(s)
- Walter Setti
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
- *Correspondence: Walter Setti,
| | - Luigi F. Cuturi
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
| | | | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
31
|
Kim HN, Sutharson SJ. Individual differences in spontaneous facial expressions in people with visual impairment and blindness. BRITISH JOURNAL OF VISUAL IMPAIRMENT 2022. [DOI: 10.1177/02646196211070927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
People can visualize their spontaneous and voluntary emotions via facial expressions, which play a critical role in social interactions. However, less is known about mechanisms of spontaneous emotion expressions, especially in adults with visual impairment and blindness. Nineteen adults with visual impairment and blindness participated in interviews where the spontaneous facial expressions were observed and analyzed via the Facial Action Coding System (FACS). We found a set of Action Units, primarily engaged in expressing the spontaneous emotions, which were likely to be affected by participants’ different characteristics. The results of this study could serve as evidence to suggest that adults with visual impairment and blindness show individual differences in spontaneous facial expressions of emotions.
Collapse
|
32
|
Arcos K, Harhen N, Loiotile R, Bedny M. Superior verbal but not nonverbal memory in congenital blindness. Exp Brain Res 2022; 240:897-908. [PMID: 35076724 PMCID: PMC9204649 DOI: 10.1007/s00221-021-06304-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
Previous studies suggest that people who are congenitally blind outperform sighted people on some memory tasks. Whether blindness-associated memory advantages are specific to verbal materials or are also observed with nonverbal sounds has not been determined. Congenitally blind individuals (n = 20) and age and education matched blindfolded sighted controls (n = 22) performed a series of auditory memory tasks. These included: verbal forward and backward letter spans, a complex letter span with intervening equations, as well as two matched recognition tasks: one with verbal stimuli (i.e., letters) and one with nonverbal complex meaningless sounds. Replicating previously observed findings, blind participants outperformed sighted people on forward and backward letter span tasks. Blind participants also recalled more letters on the complex letter span task despite the interference of intervening equations. Critically, the same blind participants showed larger advantages on the verbal as compared to the nonverbal recognition task. These results suggest that blindness selectively enhances memory for verbal material. Possible explanations for blindness-related verbal memory advantages include blindness-induced memory practice and 'visual' cortex recruitment for verbal processing.
Collapse
Affiliation(s)
- Karen Arcos
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA.
| | - Nora Harhen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Rita Loiotile
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
33
|
Russell MK. Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. Front Psychol 2022; 13:831670. [PMID: 35250777 PMCID: PMC8888835 DOI: 10.3389/fpsyg.2022.831670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
It has been well documented, and fairly well known, that concomitant with an increase in chronological age is a corresponding increase in sensory impairment. As most people realize, our hearing suffers as we get older; hence, the increased need for hearing aids. The first portion of the present paper is how the change in age apparently affects auditory judgments of sound source position. A summary of the literature evaluating the changes in the perception of sound source location and the perception of sound source motion as a function of chronological age is presented. The review is limited to empirical studies with behavioral findings involving humans. It is the view of the author that we have an immensely limited understanding of how chronological age affects perception of space when based on sound. In the latter part of the paper, discussion is given to how auditory spatial perception is traditionally conducted in the laboratory. Theoretically, beneficial reasons exist for conducting research in the manner it has been. Nonetheless, from an ecological perspective, the vast majority of previous research can be considered unnatural and greatly lacking in ecological validity. Suggestions for an alternative and more ecologically valid approach to the investigation of auditory spatial perception are proposed. It is believed an ecological approach to auditory spatial perception will enhance our understanding of the extent to which individuals perceive sound source location and how those perceptual judgments change with an increase in chronological age.
Collapse
|
34
|
Kim YH, Schrode KM, Engel J, Vicencio-Jimenez S, Rodriguez G, Lee HK, Lauer AM. Auditory Behavior in Adult-Blinded Mice. J Assoc Res Otolaryngol 2022; 23:225-239. [PMID: 35084628 PMCID: PMC8964904 DOI: 10.1007/s10162-022-00835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022] Open
Abstract
Cross-modal plasticity occurs when the function of remaining senses is enhanced following deprivation or loss of a sensory modality. Auditory neural responses are enhanced in the auditory cortex, including increased sensitivity and frequency selectivity, following short-term visual deprivation in adult mice (Petrus et al. Neuron 81:664-673, 2014). Whether or not these visual deprivation-induced neural changes translate into improved auditory perception and performance remains unclear. As an initial investigation of the effects of adult visual deprivation on auditory behaviors, CBA/CaJ mice underwent binocular enucleation at 3-4 weeks old and were tested on a battery of learned behavioral tasks, acoustic startle response (ASR), and prepulse inhibition (PPI) tests beginning at least 2 weeks after the enucleation procedure. Auditory brain stem responses (ABRs) were also measured to screen for potential effects of visual deprivation on non-behavioral hearing function. Control and enucleated mice showed similar tone detection sensitivity and frequency discrimination in a conditioned lick suppression test. Both groups showed normal reactivity to sound as measured by ASR in a quiet background. However, when startle-eliciting stimuli were presented in noise, enucleated mice showed decreased ASR amplitude relative to controls. Control and enucleated mice displayed no significant differences in ASR habituation, PPI tests, or ABR thresholds, or wave morphology. Our findings suggest that while adult-onset visual deprivation induces cross-modal plasticity at the synaptic and circuit levels, it does not substantially influence simple auditory behavioral performance.
Collapse
Affiliation(s)
- Ye-Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - James Engel
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gabriela Rodriguez
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA
| | - Hey-Kyoung Lee
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Zanvyl-Krieger Mind/Brain Institute and Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Radziun D, Crucianelli L, Ehrsson HH. Limits of Cross-modal Plasticity? Short-term Visual Deprivation Does Not Enhance Cardiac Interoception, Thermosensation, or Tactile Spatial Acuity. Biol Psychol 2021; 168:108248. [PMID: 34971758 DOI: 10.1016/j.biopsycho.2021.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 01/30/2023]
Abstract
In the present study, we investigated the effect of short-term visual deprivation on discriminative touch, cardiac interoception, and thermosensation by asking 64 healthy volunteers to perform four behavioral tasks. The experimental group contained 32 subjects who were blindfolded and kept in complete darkness for 110minutes, while the control group consisted of 32 volunteers who were not blindfolded but were otherwise kept under identical experimental conditions. Both groups performed the required tasks three times: before and directly after deprivation (or control) and after an additional washout period of 40minutes, in which all participants were exposed to normal light conditions. Our results showed that short-term visual deprivation had no effect on any of the senses tested. This finding suggests that short-term visual deprivation does not modulate basic bodily senses and extends this principle beyond tactile processing to the interoceptive modalities of cardiac and thermal sensations.
Collapse
Affiliation(s)
- Dominika Radziun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Laura Crucianelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Colorophone 2.0: A Wearable Color Sonification Device Generating Live Stereo-Soundscapes-Design, Implementation, and Usability Audit. SENSORS 2021; 21:s21217351. [PMID: 34770658 PMCID: PMC8587929 DOI: 10.3390/s21217351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
The successful development of a system realizing color sonification would enable auditory representation of the visual environment. The primary beneficiary of such a system would be people that cannot directly access visual information—the visually impaired community. Despite the plethora of sensory substitution devices, developing systems that provide intuitive color sonification remains a challenge. This paper presents design considerations, development, and the usability audit of a sensory substitution device that converts spatial color information into soundscapes. The implemented wearable system uses a dedicated color space and continuously generates natural, spatialized sounds based on the information acquired from a camera. We developed two head-mounted prototype devices and two graphical user interface (GUI) versions. The first GUI is dedicated to researchers, and the second has been designed to be easily accessible for visually impaired persons. Finally, we ran fundamental usability tests to evaluate the new spatial color sonification algorithm and to compare the two prototypes. Furthermore, we propose recommendations for the development of the next iteration of the system.
Collapse
|
37
|
Late development of audio-visual integration in the vertical plane. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Hintschich CA, Niv MY, Hummel T. The taste of the pandemic-contemporary review on the current state of research on gustation in coronavirus disease 2019 (COVID-19). Int Forum Allergy Rhinol 2021; 12:210-216. [PMID: 34704387 PMCID: PMC8653126 DOI: 10.1002/alr.22902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022]
Abstract
Subjectively perceived impairment of taste is a common and distinct symptom of coronavirus disease 2019 (COVID-19). Large meta-analyses identified this symptom in approximately 50% of cases. However, this high prevalence is not supported by blinded and validated psychophysical gustatory testing, which showed a much lower prevalence in up to 26% of patients. This discrepancy may be due to misinterpretation of impaired retronasal olfaction as gustatory dysfunction. In addition, we hypothesized that COVID-19-associated hyposmia is involved in the decrease of gustatory function, as found for hyposmia of different origin. This indirect mechanism would be based on the central-nervous mutual amplification between the chemical senses, which fails in COVID-19-associated olfactory loss. However, further research is necessary on how severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) may directly impair the gustatory pathway as well as its subjective perception.
Collapse
Affiliation(s)
| | - Masha Y Niv
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
39
|
Dias JW, McClaskey CM, Harris KC. Early auditory cortical processing predicts auditory speech in noise identification and lipreading. Neuropsychologia 2021; 161:108012. [PMID: 34474065 DOI: 10.1016/j.neuropsychologia.2021.108012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Individuals typically exhibit better cross-sensory perception following unisensory loss, demonstrating improved perception of information available from the remaining senses and increased cross-sensory use of neural resources. Even individuals with no sensory loss will exhibit such changes in cross-sensory processing following temporary sensory deprivation, suggesting that the brain's capacity for recruiting cross-sensory sources to compensate for degraded unisensory input is a general characteristic of the perceptual process. Many studies have investigated how auditory and visual neural structures respond to within- and cross-sensory input. However, little attention has been given to how general auditory and visual neural processing relates to within and cross-sensory perception. The current investigation examines the extent to which individual differences in general auditory neural processing accounts for variability in auditory, visual, and audiovisual speech perception in a sample of young healthy adults. Auditory neural processing was assessed using a simple click stimulus. We found that individuals with a smaller P1 peak amplitude in their auditory-evoked potential (AEP) had more difficulty identifying speech sounds in difficult listening conditions, but were better lipreaders. The results suggest that individual differences in the auditory neural processing of healthy adults can account for variability in the perception of information available from the auditory and visual modalities, similar to the cross-sensory perceptual compensation observed in individuals with sensory loss.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina, United States.
| | | | | |
Collapse
|
40
|
Partial visual loss disrupts the relationship between judged room size and sound source distance. Exp Brain Res 2021; 240:81-96. [PMID: 34623459 PMCID: PMC8803715 DOI: 10.1007/s00221-021-06235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
Visual spatial information plays an important role in calibrating auditory space. Blindness results in deficits in a number of auditory abilities, which have been explained in terms of the hypothesis that visual information is needed to calibrate audition. When judging the size of a novel room when only auditory cues are available, normally sighted participants may use the location of the farthest sound source to infer the nearest possible distance of the far wall. However, for people with partial visual loss (distinct from blindness in that some vision is present), such a strategy may not be reliable if vision is needed to calibrate auditory cues for distance. In the current study, participants were presented with sounds at different distances (ranging from 1.2 to 13.8 m) in a simulated reverberant (T60 = 700 ms) or anechoic room. Farthest distance judgments and room size judgments (volume and area) were obtained from blindfolded participants (18 normally sighted, 38 partially sighted) for speech, music, and noise stimuli. With sighted participants, the judged room volume and farthest sound source distance estimates were positively correlated (p < 0.05) for all conditions. Participants with visual losses showed no significant correlations for any of the conditions tested. A similar pattern of results was observed for the correlations between farthest distance and room floor area estimates. Results demonstrate that partial visual loss disrupts the relationship between judged room size and sound source distance that is shown by sighted participants.
Collapse
|
41
|
Thaler L, Norman LJ. No effect of 10-week training in click-based echolocation on auditory localization in people who are blind. Exp Brain Res 2021; 239:3625-3633. [PMID: 34609546 PMCID: PMC8599323 DOI: 10.1007/s00221-021-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
What factors are important in the calibration of mental representations of auditory space? A substantial body of research investigating the audiospatial abilities of people who are blind has shown that visual experience might be an important factor for accurate performance in some audiospatial tasks. Yet, it has also been shown that long-term experience using click-based echolocation might play a similar role, with blind expert echolocators demonstrating auditory localization abilities that are superior to those of people who are blind and who do not use click-based echolocation by Vercillo et al. (Neuropsychologia 67: 35–40, 2015). Based on this hypothesis we might predict that training in click-based echolocation may lead to improvement in performance in auditory localization tasks in people who are blind. Here we investigated this hypothesis in a sample of 12 adult people who have been blind from birth. We did not find evidence for an improvement in performance in auditory localization after 10 weeks of training despite significant improvement in echolocation ability. It is possible that longer-term experience with click-based echolocation is required for effects to develop, or that other factors can explain the association between echolocation expertise and superior auditory localization. Considering the practical relevance of click-based echolocation for people who are visually impaired, future research should address these questions.
Collapse
Affiliation(s)
- Lore Thaler
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK.
| | - Liam J Norman
- Department of Psychology, Durham University, Science Site, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
42
|
Bragg D, Reinecke K, Ladner RE. Expanding a Large Inclusive Study of Human Listening Rates. ACM TRANSACTIONS ON ACCESSIBLE COMPUTING 2021. [DOI: 10.1145/3461700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
As conversational agents and digital assistants become increasingly pervasive, understanding their synthetic speech becomes increasingly important. Simultaneously, speech synthesis is becoming more sophisticated and manipulable, providing the opportunity to optimize speech rate to save users time. However, little is known about people’s abilities to understand fast speech. In this work, we provide an extension of the first large-scale study on human listening rates, enlarging the prior study run with 453 participants to 1,409 participants and adding new analyses on this larger group. Run on LabintheWild, it used volunteer participants, was screen reader accessible, and measured listening rate by accuracy at answering questions spoken by a screen reader at various rates. Our results show that people who are visually impaired, who often rely on audio cues and access text aurally, generally have higher listening rates than sighted people. The findings also suggest a need to expand the range of rates available on personal devices. These results demonstrate the potential for users to learn to listen to faster rates, expanding the possibilities for human-conversational agent interaction.
Collapse
|
43
|
Bertonati G, Amadeo MB, Campus C, Gori M. Auditory speed processing in sighted and blind individuals. PLoS One 2021; 16:e0257676. [PMID: 34551010 PMCID: PMC8457492 DOI: 10.1371/journal.pone.0257676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Multisensory experience is crucial for developing a coherent perception of the world. In this context, vision and audition are essential tools to scaffold spatial and temporal representations, respectively. Since speed encompasses both space and time, investigating this dimension in blindness allows deepening the relationship between sensory modalities and the two representation domains. In the present study, we hypothesized that visual deprivation influences the use of spatial and temporal cues underlying acoustic speed perception. To this end, ten early blind and ten blindfolded sighted participants performed a speed discrimination task in which spatial, temporal, or both cues were available to infer moving sounds' velocity. The results indicated that both sighted and early blind participants preferentially relied on temporal cues to determine stimuli speed, by following an assumption that identified as faster those sounds with a shorter duration. However, in some cases, this temporal assumption produces a misperception of the stimulus speed that negatively affected participants' performance. Interestingly, early blind participants were more influenced by this misleading temporal assumption than sighted controls, resulting in a stronger impairment in the speed discrimination performance. These findings demonstrate that the absence of visual experience in early life increases the auditory system's preference for the time domain and, consequentially, affects the perception of speed through audition.
Collapse
Affiliation(s)
- Giorgia Bertonati
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), Università degli Studi di Genova, Genova, Italy
| | - Maria Bianca Amadeo
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
44
|
Kim HN, Sutharson SJ. Emotional valence and arousal induced by auditory stimuli among individuals with visual impairment. BRITISH JOURNAL OF VISUAL IMPAIRMENT 2021. [DOI: 10.1177/02646196211042257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite significant vision loss, humans can still recognize various emotional stimuli via a sense of hearing and express diverse emotional responses, which can be sorted into two dimensions, arousal and valence. Yet, many research studies have been focusing on sighted people, leading to lack of knowledge about emotion perception mechanisms of people with visual impairment. This study aims at advancing knowledge of the degree to which people with visual impairment perceive various emotions – high/low arousal and positive/negative emotions. A total of 30 individuals with visual impairment participated in interviews where they listened to stories of people who became visually impaired, encountered and overcame various challenges, and they were instructed to share their emotions. Participants perceived different kinds and intensities of emotions, depending on their demographic variables such as living alone, loneliness, onset of visual impairment, visual acuity, race/ethnicity, and employment status. The advanced knowledge of emotion perceptions in people with visual impairment is anticipated to contribute toward better designing social supports that can adequately accommodate those with visual impairment.
Collapse
Affiliation(s)
- Hyung Nam Kim
- North Carolina Agricultural and Technical State University, USA
| | | |
Collapse
|
45
|
Structural and white matter changes associated with duration of Braille education in early and late blind children. Vis Neurosci 2021; 38:E011. [PMID: 34425936 DOI: 10.1017/s0952523821000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In early (EB) and late blind (LB) children, vision deprivation produces cross-modal plasticity in the visual cortex. The progression of structural- and tract-based spatial statistics changes in the visual cortex in EB and LB, as well as their impact on global cognition, have yet to be investigated. The purpose of this study was to determine the cortical thickness (CT), gyrification index (GI), and white matter (WM) integrity in EB and LB children, as well as their association to the duration of blindness and education. Structural and diffusion tensor imaging data were acquired in a 3T magnetic resonance imaging in EB and LB children (n = 40 each) and 30 sighted controls (SCs) and processed using CAT12 toolbox and FSL software. Two sample t-test was used for group analyses with P < 0.05 (false discovery rate-corrected). Increased CT in visual, sensory-motor, and auditory areas, and GI in bilateral visual cortex was observed in EB children. In LB children, the right visual cortex, anterior-cingulate, sensorimotor, and auditory areas showed increased GI. Structural- and tract-based spatial statistics changes were observed in anterior visual pathway, thalamo-cortical, and corticospinal tracts, and were correlated with education onset and global cognition in EB children. Reduced impairment in WM, increased CT and GI and its correlation with global cognitive functions in visually impaired children suggests cross-modal plasticity due to adaptive compensatory mechanism (as compared to SCs). Reduced CT and increased FA in thalamo-cortical areas in EB suggest synaptic pruning and alteration in WM integrity. In the visual cortical pathway, higher education and the development of blindness modify the morphology of brain areas and influence the probabilistic tractography in EB rather than LB.
Collapse
|
46
|
Kanjlia S, Feigenson L, Bedny M. Neural basis of approximate number in congenital blindness. Cortex 2021; 142:342-356. [PMID: 34352637 DOI: 10.1016/j.cortex.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychology, Carnegie Mellon University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
47
|
Norman LJ, Dodsworth C, Foresteire D, Thaler L. Human click-based echolocation: Effects of blindness and age, and real-life implications in a 10-week training program. PLoS One 2021; 16:e0252330. [PMID: 34077457 PMCID: PMC8171922 DOI: 10.1371/journal.pone.0252330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the factors that determine if a person can successfully learn a novel sensory skill is essential for understanding how the brain adapts to change, and for providing rehabilitative support for people with sensory loss. We report a training study investigating the effects of blindness and age on the learning of a complex auditory skill: click-based echolocation. Blind and sighted participants of various ages (21-79 yrs; median blind: 45 yrs; median sighted: 26 yrs) trained in 20 sessions over the course of 10 weeks in various practical and virtual navigation tasks. Blind participants also took part in a 3-month follow up survey assessing the effects of the training on their daily life. We found that both sighted and blind people improved considerably on all measures, and in some cases performed comparatively to expert echolocators at the end of training. Somewhat surprisingly, sighted people performed better than those who were blind in some cases, although our analyses suggest that this might be better explained by the younger age (or superior binaural hearing) of the sighted group. Importantly, however, neither age nor blindness was a limiting factor in participants' rate of learning (i.e. their difference in performance from the first to the final session) or in their ability to apply their echolocation skills to novel, untrained tasks. Furthermore, in the follow up survey, all participants who were blind reported improved mobility, and 83% reported better independence and wellbeing. Overall, our results suggest that the ability to learn click-based echolocation is not strongly limited by age or level of vision. This has positive implications for the rehabilitation of people with vision loss or in the early stages of progressive vision loss.
Collapse
Affiliation(s)
- Liam J. Norman
- Department of Psychology, Durham University, Durham, United Kingdom
| | | | | | - Lore Thaler
- Department of Psychology, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Touj S, Cloutier S, Jemâa A, Piché M, Bronchti G, Al Aïn S. Better Olfactory Performance and Larger Olfactory Bulbs in a Mouse Model of Congenital Blindness. Chem Senses 2021; 45:523-531. [PMID: 32766717 DOI: 10.1093/chemse/bjaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is well established that early blindness results in enhancement of the remaining nonvisual sensory modalities accompanied by functional and anatomical brain plasticity. While auditory and tactile functions have been largely investigated, the results regarding olfactory functions remained less explored and less consistent. In the present study, we investigated olfactory function in blind mice using 3 tests: the buried food test, the olfactory threshold test, and the olfactory performance test. The results indicated better performance of blind mice in the buried food test and odor performance test while there was no difference in the olfactory threshold test. Using histological measurements, we also investigated if there was anatomical plasticity in the olfactory bulbs (OB), the most salient site for olfactory processing. The results indicated a larger volume of the OB driven by larger glomerular and granular layers in blind mice compared with sighted mice. Structural plasticity in the OB may underlie the enhanced olfactory performance in blind mice.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Samie Cloutier
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Amel Jemâa
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| |
Collapse
|
49
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
50
|
Crollen V, Warusfel H, Noël MP, Collignon O. Early visual deprivation does not prevent the emergence of basic numerical abilities in blind children. Cognition 2021; 210:104586. [DOI: 10.1016/j.cognition.2021.104586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022]
|