1
|
Gehrig S, Mesoudi A, Lamba S. Banking on cooperation: an evolutionary analysis of microfinance loan repayment behaviour. EVOLUTIONARY HUMAN SCIENCES 2020; 3:e2. [PMID: 37588542 PMCID: PMC10427283 DOI: 10.1017/ehs.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microfinance is an economic development tool that provides loans to low-income borrowers to stimulate economic growth and reduce financial hardship. Lenders typically require joint liability, where multiple borrowers share the responsibility of repaying a group loan. We propose that this lending practice creates a cooperation dilemma similar to that faced by humans and other organisms in nature across many domains. This could offer a real-world test case for evolutionary theories of cooperation from the biological sciences. In turn, such theories could provide new insights into loan repayment behaviour. We first hypothesise how group loan repayment efficacy should be affected by mechanisms of assortment from the evolutionary literature on cooperation, i.e. common ancestry (kin selection), prior interaction (reciprocity), partner choice, similarity of tags, social learning, and ecology and demography. We then assess selected hypotheses by reviewing 41 studies from 32 countries on micro-borrowers' loan repayment, evaluating which characteristics of borrowers are associated with credit repayment behaviour. Surprisingly, we find that kinship is mostly negatively associated with repayment efficacy, but prior interaction and partner choice are both more positively associated. Our work highlights the scope of evolutionary theory to provide systematic insight into how humans respond to novel economic institutions and interventions.
Collapse
Affiliation(s)
- Stefan Gehrig
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Alex Mesoudi
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Shakti Lamba
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
2
|
Marshall HH, Sanderson JL, Mwanghuya F, Businge R, Kyabulima S, Hares MC, Inzani E, Kalema-Zikusoka G, Mwesige K, Thompson FJ, Vitikainen EIK, Cant MA. Variable ecological conditions promote male helping by changing banded mongoose group composition. Behav Ecol 2016; 27:978-987. [PMID: 27418750 PMCID: PMC4943108 DOI: 10.1093/beheco/arw006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/20/2023] Open
Abstract
Ecological conditions are expected to have an important influence on individuals' investment in cooperative care. However, the nature of their effects is unclear: both favorable and unfavorable conditions have been found to promote helping behavior. Recent studies provide a possible explanation for these conflicting results by suggesting that increased ecological variability, rather than changes in mean conditions, promote cooperative care. However, no study has tested whether increased ecological variability promotes individual-level helping behavior or the mechanisms involved. We test this hypothesis in a long-term study population of the cooperatively breeding banded mongoose, Mungos mungo, using 14 years of behavioral and meteorological data to explore how the mean and variability of ecological conditions influence individual behavior, body condition, and survival. Female body condition was more sensitive to changes in rainfall leading to poorer female survival and pronounced male-biased group compositions after periods of high rainfall variability. After such periods, older males invested more in helping behavior, potentially because they had fewer mating opportunities. These results provide the first empirical evidence for increased individual helping effort in more variable ecological conditions and suggest this arises because of individual differences in the effect of ecological conditions on body condition and survival, and the knock-on effect on social group composition. Individual differences in sensitivity to environmental variability, and the impacts this has on the internal structure and composition of animal groups, can exert a strong influence on the evolution and maintenance of social behaviors, such as cooperative care.
Collapse
Affiliation(s)
- Harry H Marshall
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | - Jennifer L Sanderson
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | - Francis Mwanghuya
- Banded Mongoose Research Project , Queen Elizabeth National Park, Kasese , Uganda
| | - Robert Businge
- Banded Mongoose Research Project , Queen Elizabeth National Park, Kasese , Uganda
| | - Solomon Kyabulima
- Banded Mongoose Research Project , Queen Elizabeth National Park, Kasese , Uganda
| | - Michelle C Hares
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | - Emma Inzani
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | | | - Kenneth Mwesige
- Banded Mongoose Research Project , Queen Elizabeth National Park, Kasese , Uganda
| | - Faye J Thompson
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | - Emma I K Vitikainen
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| | - Michael A Cant
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus , Treliever Road, Penryn, Cornwall TR10 9FE , UK
| |
Collapse
|
3
|
Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models. Appl Environ Microbiol 2015; 81:8414-26. [PMID: 26431965 DOI: 10.1128/aem.02628-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022] Open
Abstract
As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.
Collapse
|
4
|
Piasecka A, Souffreau C, Vandepitte K, Vanysacker L, Bilad RM, Bie TD, Hellemans B, Meester LD, Yan X, Declerck P, Vankelecom IFJ. Analysis of the microbial community structure in a membrane bioreactor during initial stages of filtration. BIOFOULING 2012; 28:225-238. [PMID: 22353160 DOI: 10.1080/08927014.2012.662640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Membrane biofouling was investigated during the early stages of filtration in a laboratory-scale membrane bioreactor operated on molasses wastewater. The bacterial diversity and composition of the membrane biofilm and activated sludge were analyzed using terminal restriction fragment length polymorphism coupled with 16S rRNA clone library construction and sequencing. The amount of extracellular polymeric substances produced by bacteria was investigated using spectroscopic methods. The results reveal that the bacterial community of activated sludge differs significantly from that of the membrane biofilm, especially at the initial phase. Phylogenetic analysis based on 16S rRNA gene sequences identified 25 pioneer OTUs responsible for membrane surface colonization. Also, the relationship between the identified bacterial strains and the system specifications was explored.
Collapse
Affiliation(s)
- Anna Piasecka
- Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, PO Box 2461, Heverlee 3001, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Banks SC, Blyton MDJ, Blair D, McBurney L, Lindenmayer DB. Adaptive responses and disruptive effects: how major wildfire influences kinship-based social interactions in a forest marsupial. Mol Ecol 2011; 21:673-84. [PMID: 21929555 DOI: 10.1111/j.1365-294x.2011.05282.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sam C Banks
- The Fenner School of Environment and Society, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Microbial ecology is revealing the vast diversity of strains and species that coexist in many environments, ranging from free-living communities to the symbionts that compose the human microbiome. In parallel, there is growing evidence of the importance of cooperative phenotypes for the growth and behavior of microbial groups. Here we ask: How does the presence of multiple species affect the evolution of cooperative secretions? We use a computer simulation of spatially structured cellular groups that captures key features of their biology and physical environment. When nutrient competition is strong, we find that the addition of new species can inhibit cooperation by eradicating secreting strains before they can become established. When nutrients are abundant and many species mix in one environment, however, our model predicts that secretor strains of any one species will be surrounded by other species. This "social insulation" protects secretors from competition with nonsecretors of the same species and can improve the prospects of within-species cooperation. We also observe constraints on the evolution of mutualistic interactions among species, because it is difficult to find conditions that simultaneously favor both within- and among-species cooperation. Although relatively simple, our model reveals the richness of interactions between the ecology and social evolution of multispecies microbial groups, which can be critical for the evolution of cooperation.
Collapse
Affiliation(s)
- Sara Mitri
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Oxford Centre for Integrative Systems Biology, Oxford University, Oxford OX1 3QU, United Kingdom; and
| | - João B. Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kevin R. Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Oxford Centre for Integrative Systems Biology, Oxford University, Oxford OX1 3QU, United Kingdom; and
| |
Collapse
|
7
|
Abstract
Conflict and competition lie at the heart of the theories of both ecology and sociobiology. Despite this, the interaction between societal conflicts on one hand and ecological competition on the other remains poorly understood. Here, we investigate this interaction in two ecologically similar sympatric termite species, Cryptotermes secundus Hill and Cryptotermes domesticus Haviland. We manipulated the incidence of king and queen loss (within-species conflict) and the incidence of cohabitation of the two species (between-species competition) in a series of 2 year experiments. Manipulation alone had no detectable effect and most colonies survived the 2-year period. In contrast, promoting both within- and between-species conflict caused the great majority of colonies to die. Moreover, the resulting colony loss was much more rapid in the conflict-ridden C. domesticus than in C. secundus. Our data suggest that ecological competition among species can greatly exacerbate the impact of internal conflicts, thereby promoting the evolution of within-species cooperation.
Collapse
|
8
|
Abstract
How competitive interactions and population structure promote or inhibit cooperation in animal groups remains a key challenge in social evolution. In eusocial aphids, there is no single explanation for what predisposes some lineages of aphids to sociality, and not others. Because the assumption has been that most aphid species occur in essentially clonal groups, the roles of intra- and interspecific competition and population structure in aphid sociality have been given little consideration. Here, I used microsatellites to evaluate the patterns of variation in the clonal group structure of both social and nonsocial aphid species. Multiclonal groups are consistent features across sites and host plants, and all species-social or not-can be found in groups composed of large fractions of multiple clones, and even multiple species. Between-group dispersal in gall-forming aphids is ubiquitous, implying that factors acting ultimately to increase between-clone interactions and decrease within-group relatedness were present in aphids prior to the origins of sociality. By demonstrating that between-group dispersal is common in aphids, and thus interactions between clones are also common, these results suggest that understanding the ecological dynamics of dispersal and competition may offer unique insights into the evolutionary puzzle of sociality in aphids.
Collapse
Affiliation(s)
- Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
9
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
10
|
Rakhimova E, Munder A, Wiehlmann L, Bredenbruch F, Tümmler B. Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection. PLoS One 2008; 3:e1685. [PMID: 18301762 PMCID: PMC2246019 DOI: 10.1371/journal.pone.0001685] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/25/2008] [Indexed: 11/18/2022] Open
Abstract
Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called 'dissociative behaviour'. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of-function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild.
Collapse
Affiliation(s)
- Elza Rakhimova
- Clinical Research Group, OE6710, Hanover Medical School, Hanover, Germany
| | - Antje Munder
- Clinical Research Group, OE6710, Hanover Medical School, Hanover, Germany
| | - Lutz Wiehlmann
- Clinical Research Group, OE6710, Hanover Medical School, Hanover, Germany
| | - Florian Bredenbruch
- Helmholtz Centre for Infection Research, Division of Cell Biology and Immunology, Braunschweig, Germany
| | - Burkhard Tümmler
- Clinical Research Group, OE6710, Hanover Medical School, Hanover, Germany
| |
Collapse
|
11
|
Abandoning Aggression but Maintaining Self-Nonself Discrimination as a First Stage in Ant Supercolony Formation. Curr Biol 2007; 17:1903-7. [DOI: 10.1016/j.cub.2007.09.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 11/21/2022]
|