1
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Khamwachirapithak P, Guillaume-Schoepfer D, Chansongkrow P, Teichmann SA, Wigge PA, Charoensawan V. Characterizing Different Modes of Interplay Between Rap1 and H3 Using Inducible H3-depletion Yeast. J Mol Biol 2023; 435:168355. [PMID: 37935256 DOI: 10.1016/j.jmb.2023.168355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Histones and transcription factors (TFs) are two important DNA-binding proteins that interact, compete, and together regulate transcriptional processes in response to diverse internal and external stimuli. Condition-specific depletion of histones in Saccharomyces cerevisiae using a galactose-inducible H3 promoter provides a suitable framework for examining transcriptional alteration resulting from reduced nucleosome content. However, the effect on DNA binding activities of TFs is yet to be fully explored. In this work, we combine ChIP-seq of H3 with RNA-seq to elucidate the genome-scale relationships between H3 occupancy patterns and transcriptional dynamics before and after global H3 depletion. ChIP-seq of Rap1 is also conducted in the H3-depletion and control treatments, to investigate the interplay between this master regulator TF and nucleosomal H3, and to explore the impact on diverse transcriptional responses of different groups of target genes and functions. Ultimately, we propose a working model and testable hypotheses regarding the impact of global and local H3 depletion on transcriptional changes. We also demonstrate different potential modes of interaction between Rap1 and H3, which sheds light on the potential multifunctional regulatory capabilities of Rap1 and potentially other pioneer factors.
Collapse
Affiliation(s)
- Peerapat Khamwachirapithak
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom; University Potsdam, Institute for Biochemistry and Biology, Molecular Biology, Karl-Liebknecht-Str, Potsdam-Golm, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) center, Mahidol University, Nakhon Pathom, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
3
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
6
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
7
|
Pitman M, Dalal Y, Papoian GA. Minimal Cylinder Analysis Reveals the Mechanical Properties of Oncogenic Nucleosomes. Biophys J 2020; 118:2309-2318. [PMID: 32097625 PMCID: PMC7203005 DOI: 10.1016/j.bpj.2020.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Histone variants regulate replication, transcription, DNA damage repair, and chromosome segregation. Though widely accepted as a paradigm, it has not been rigorously demonstrated that histone variants encode unique mechanical properties. Here, we present a new theoretical approach called minimal cylinder analysis that uses strain fluctuations to determine the Young's modulus of nucleosomes from all-atom molecular dynamics simulations. Recently, we validated this computational tool against in vitro single-molecule nanoindentation of histone variant nucleosomes. In this report, we further extend minimal cylinder analysis to study the biophysical properties of hybrid nucleosomes that are known to exist in human cancer cells and contain H3 histone variants CENP-A and H3.3. Here, we report that the heterotypic nucleosome has an intermediate elasticity (8.5 ± 0.5 MPa) compared to CENP-A (6.2 ± 0.4 MPa) and H3 (9.8 ± 0.7 MPa) and that the dynamics of both canonical and CENP-A nucleosomes are preserved and partitioned across the nucleosome pseudodyad. Furthermore, we investigate the mechanism by which the elasticity of these heterotypic nucleosomes augments cryptic binding surfaces. From these analyses, we predict that the heterotypic nucleosome is permissive to the binding of one copy of the kinetochore protein CENP-C while still retaining a closed DNA end configuration required for linker histone H1 to bind. We discuss that the ectopic deposition of CENP-A in cancer by H3.3 chaperones HIRA and DAXX may fortuitously result in hybrid nucleosome formation. Using these results, we propose biological outcomes that might arise when such heterotypic nucleosomes occupy large regions of the genome.
Collapse
Affiliation(s)
- Mary Pitman
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| |
Collapse
|
8
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
9
|
Roy B, Verma V, Sim J, Fontan A, Joglekar AP. Delineating the contribution of Spc105-bound PP1 to spindle checkpoint silencing and kinetochore microtubule attachment regulation. J Cell Biol 2019; 218:3926-3942. [PMID: 31649151 PMCID: PMC6891095 DOI: 10.1083/jcb.201810172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/19/2019] [Accepted: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Roy et al. highlight a harmful cross-talk that can arise between spindle assembly checkpoint silencing and chromosome biorientation due to the involvement of protein phosphatase 1 in both the processes. Accurate chromosome segregation during cell division requires the spindle assembly checkpoint (SAC), which detects unattached kinetochores, and an error correction mechanism that destabilizes incorrect kinetochore–microtubule attachments. While the SAC and error correction are both regulated by protein phosphatase 1 (PP1), which silences the SAC and stabilizes kinetochore–microtubule attachments, how these distinct PP1 functions are coordinated remains unclear. Here, we investigate the contribution of PP1, docked on its conserved kinetochore receptor Spc105/Knl1, to SAC silencing and attachment regulation. We find that Spc105-bound PP1 is critical for SAC silencing but dispensable for error correction; in fact, reduced PP1 docking on Spc105 improved chromosome segregation and viability of mutant/stressed states. We additionally show that artificially recruiting PP1 to Spc105/Knl1 before, but not after, chromosome biorientation interfered with error correction. These observations lead us to propose that recruitment of PP1 to Spc105/Knl1 is carefully regulated to ensure that chromosome biorientation precedes SAC silencing, thereby ensuring accurate chromosome segregation.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Vikash Verma
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Janice Sim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Adrienne Fontan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ajit P Joglekar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biophysics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
11
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes. Nat Commun 2018; 9:2952. [PMID: 30054463 PMCID: PMC6063951 DOI: 10.1038/s41467-018-05338-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
In the first meiotic division (MI) of oocytes, the cortically positioned spindle causes bivalent segregation in which only the centre-facing homologue pairs are retained. 'Selfish' chromosomes are known to exist, which bias their spindle orientation and hence retention in the egg, a process known as 'meiotic drive'. Here we report on this phenomenon in oocytes from F1 hybrid mice, where parental strain differences in centromere size allows distinction of the two homologue pairs of a bivalent. Bivalents with centromere and kinetochore asymmetry show meiotic drive by rotating during prometaphase, in a process dependent on aurora kinase activity. Cortically positioned homologue pairs appear to be under greater stretch than their centre-facing partners. Additionally the cortex spindle-half contain a greater density of tubulin and microtubule organising centres. A model is presented in which meiotic drive is explained by the impact of microtubule force asymmetry on chromosomes with different sized centromeres and kinetochores.
Collapse
|
13
|
Carvalhal S, Tavares A, Santos MB, Mirkovic M, Oliveira RA. A quantitative analysis of cohesin decay in mitotic fidelity. J Cell Biol 2018; 217:3343-3353. [PMID: 30002073 PMCID: PMC6168270 DOI: 10.1083/jcb.201801111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Sister chromatid cohesion mediated by cohesin is essential for mitotic fidelity. It counteracts spindle forces to prevent premature chromatid individualization and random genome segregation. However, it is unclear what effects a partial decline of cohesin may have on chromosome organization. In this study, we provide a quantitative analysis of cohesin decay by inducing acute removal of defined amounts of cohesin from metaphase-arrested chromosomes. We demonstrate that sister chromatid cohesion is very resistant to cohesin loss as chromatid disjunction is only observed when chromosomes lose >80% of bound cohesin. Removal close to this threshold leads to chromosomes that are still cohered but display compromised chromosome alignment and unstable spindle attachments. Partial cohesin decay leads to increased duration of mitosis and susceptibility to errors in chromosome segregation. We propose that high cohesin density ensures centromeric chromatin rigidity necessary to maintain a force balance with the mitotic spindle. Partial cohesin loss may lead to chromosome segregation errors even when sister chromatid cohesion is fulfilled.
Collapse
|
14
|
Lianga N, Doré C, Kennedy EK, Yeh E, Williams EC, Fortinez CM, Wang A, Bloom KS, Rudner AD. Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genet 2018; 14:e1007029. [PMID: 29561844 PMCID: PMC5880407 DOI: 10.1371/journal.pgen.1007029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/02/2018] [Accepted: 09/17/2017] [Indexed: 12/27/2022] Open
Abstract
Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.
Collapse
Affiliation(s)
- Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Doré
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin K. Kennedy
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elaine Yeh
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Elizabeth C. Williams
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Camille Marie Fortinez
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alick Wang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kerry S. Bloom
- University of North Carolina, Chapel Hill, Department of Biology, Chapel Hill, NC, United States of America
| | - Adam D. Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Samejima K, Booth DG, Ogawa H, Paulson JR, Xie L, Watson CA, Platani M, Kanemaki MT, Earnshaw WC. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J Cell Sci 2018; 131:jcs.210187. [PMID: 29361541 PMCID: PMC5868952 DOI: 10.1242/jcs.210187] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
The requirement for condensin in chromosome formation in somatic cells remains unclear, as imperfectly condensed chromosomes do form in cells depleted of condensin by conventional methodologies. In order to dissect the roles of condensin at different stages of vertebrate mitosis, we have established a versatile cellular system that combines auxin-mediated rapid degradation with chemical genetics to obtain near-synchronous mitotic entry of chicken DT40 cells in the presence and absence of condensin. We analyzed the outcome by live- and fixed-cell microscopy methods, including serial block face scanning electron microscopy with digital reconstruction. Following rapid depletion of condensin, chromosomal defects were much more obvious than those seen after a slow depletion of condensin. The total mitotic chromatin volume was similar to that in control cells, but a single mass of mitotic chromosomes was clustered at one side of a bent mitotic spindle. Cultures arrest at prometaphase, eventually exiting mitosis without segregating chromosomes. Experiments where the auxin concentration was titrated showed that different condensin levels are required for anaphase chromosome segregation and formation of a normal chromosome architecture. This article has an associated First Person interview with the first author of the paper. Summary: Rapid condensin depletion reveals that different condensin levels are required for mitotic chromosome architecture and segregation. Condensin is not required for chromatin volume compaction during mitosis.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Daniel G Booth
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA
| | - Cara A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Melpomeni Platani
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, ROIS, and Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
16
|
Abstract
Chromatin is organized into higher-order structures that form subcompartments in interphase nuclei. Different categories of specialized enzymes act on chromatin and regulate its compaction and biophysical characteristics in response to physiological conditions. We present an overview of the function of chromatin structure and its dynamic changes in response to genotoxic stress, focusing on both subnuclear organization and the physical mobility of DNA. We review the requirements and mechanisms that cause chromatin relocation, enhanced mobility, and chromatin unfolding as a consequence of genotoxic lesions. An intriguing link has been established recently between enhanced chromatin dynamics and histone loss.
Collapse
Affiliation(s)
- Michael H Hauer
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Miroshnikova YA, Nava MM, Wickström SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci 2017. [DOI: 10.1242/jcs.202192] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Cells are constantly subjected to a spectrum of mechanical cues, such as shear stress, compression, differential tissue rigidity and strain, to which they adapt by engaging mechanisms of mechanotransduction. While the central role of cell adhesion receptors in this process is established, it has only recently been appreciated that mechanical cues reach far beyond the plasma membrane and the cytoskeleton, and are directly transmitted to the nucleus. Furthermore, changes in the mechanical properties of the perinuclear cytoskeleton, nuclear lamina and chromatin are critical for cellular responses and adaptation to external mechanical cues. In that respect, dynamic changes in the nuclear lamina and the surrounding cytoskeleton modify mechanical properties of the nucleus, thereby protecting genetic material from damage. The importance of this mechanism is highlighted by debilitating genetic diseases, termed laminopathies, that result from impaired mechanoresistance of the nuclear lamina. What has been less evident, and represents one of the exciting emerging concepts, is that chromatin itself is an active rheological element of the nucleus, which undergoes dynamic changes upon application of force, thereby facilitating cellular adaption to differential force environments. This Review aims to highlight these emerging concepts by discussing the latest literature in this area and by proposing an integrative model of cytoskeletal and chromatin-mediated responses to mechanical stress.
Collapse
Affiliation(s)
| | - Michele M. Nava
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sara A. Wickström
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 50931, Germany
| |
Collapse
|
19
|
Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O’Toole E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. SCIENCE ADVANCES 2017; 3:e1601603. [PMID: 28116355 PMCID: PMC5249259 DOI: 10.1126/sciadv.1601603] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/05/2016] [Indexed: 05/10/2023]
Abstract
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.
Collapse
Affiliation(s)
- Robert Blackwell
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- PULS Group, Department of Physics and Cluster of Excellence: Engineering of Advanced Materials, Friedrich-Alexander University Erlangen-Nurnberg, Nagelsbachstr. 49b, Erlangen, Germany
| | | | | | - Adam Lamson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Zachary R. Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Eileen O’Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ammon Crapo
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Loren E. Hough
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
20
|
Seeber A, Gasser SM. Chromatin organization and dynamics in double-strand break repair. Curr Opin Genet Dev 2016; 43:9-16. [PMID: 27810555 DOI: 10.1016/j.gde.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Chromatin is organized and segmented into a landscape of domains that serve multiple purposes. In contrast to transcription, which is controlled by defined sequences at distinct sites, DNA damage can occur anywhere. Repair accordingly must occur everywhere, yet it is inevitably affected by its chromatin environment. In this review, we summarize recent work investigating how changes in chromatin organization facilitate and/or guide DNA double-strand break repair. In addition, we examine new live cell studies on the dynamics of chromatin and the mechanisms that regulate its movement.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
21
|
Fees CP, Aiken J, O'Toole ET, Giddings TH, Moore JK. The negatively charged carboxy-terminal tail of β-tubulin promotes proper chromosome segregation. Mol Biol Cell 2016; 27:1786-96. [PMID: 27053662 PMCID: PMC4884069 DOI: 10.1091/mbc.e15-05-0300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/30/2016] [Indexed: 11/11/2022] Open
Abstract
Microtubules are essential for chromosome segregation. A study of the mechanistic contributions of tubulin proteins identifies a specific role for the negatively charged carboxy-terminal tail domain of b-tubulin in positioning kinetochores in the mitotic spindle and ensuring efficient and accurate chromosome segregation. Despite the broadly conserved role of microtubules in chromosome segregation, we have a limited understanding of how molecular features of tubulin proteins contribute to the underlying mechanisms. Here we investigate the negatively charged carboxy-terminal tail domains (CTTs) of α- and β-tubulins, using a series of mutants that alter or ablate CTTs in budding yeast. We find that ablating β-CTT causes elevated rates of chromosome loss and cell cycle delay. Complementary live-cell imaging and electron tomography show that β-CTT is necessary to properly position kinetochores and organize microtubules within the assembling spindle. We identify a minimal region of negatively charged amino acids that is necessary and sufficient for proper chromosome segregation and provide evidence that this function may be conserved across species. Our results provide the first in vivo evidence of a specific role for tubulin CTTs in chromosome segregation. We propose that β-CTT promotes the ordered segregation of chromosomes by stabilizing the spindle and contributing to forces that move chromosomes toward the spindle poles.
Collapse
Affiliation(s)
- Colby P Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado Boulder, Boulder, CO 80309
| | - Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
22
|
Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolić IM, Gregan J. Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 2016; 212:767-76. [PMID: 27002163 PMCID: PMC4810299 DOI: 10.1083/jcb.201506011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore-centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.
Collapse
Affiliation(s)
- Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emanuele Roscioli
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Lijuan Zhang
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alfonso García-Ulloa
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Michael W Berns
- Beckman Laser Institute and University of California, Irvine, Irvine, CA 92612
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
23
|
Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Mol Cell Biol 2016; 36:1064-77. [PMID: 26787838 DOI: 10.1128/mcb.00770-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeast Saccharomyces cerevisiae results in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria. Together, our data indicate that altered chromatin structure relieves glucose repression of mitochondrial respiration by inducing transcription of the TCA cycle and OXPHOS genes carried by both nuclear and mitochondrial DNA.
Collapse
|
24
|
Calderon CP, Bloom K. Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments. PLoS One 2015; 10:e0137633. [PMID: 26384324 PMCID: PMC4575198 DOI: 10.1371/journal.pone.0137633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Understanding the basis for intracellular motion is critical as the field moves toward a deeper understanding of the relation between Brownian forces, molecular crowding, and anisotropic (or isotropic) energetic forcing. Effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study discusses limitations in currently popular analysis methods (e.g., mean square displacement-based analyses) and how new techniques can be used to systematically analyze Single Particle Tracking (SPT) data experiencing abrupt state changes in time or space. The approach is to track GFP tagged chromatids in metaphase in live yeast cells and quantitatively probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes can be induced by various sources including: microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, and DNA-based molecular machines including polymerases and protein exchange complexes such as chaperones and chromatin remodeling complexes. Simulations aiming to show the relevance of the approach to more general SPT data analyses are also studied. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and/or subjective information.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
25
|
Stephens AD, Snider CE, Bloom K. The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation. Cell Cycle 2015; 14:2206-18. [PMID: 25946564 PMCID: PMC4613993 DOI: 10.1080/15384101.2015.1046656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022] Open
Abstract
The pericentromere chromatin protrudes orthogonally from the sister-sister chromosome arm axis. Pericentric protrusions are organized in a series of loops with the centromere at the apex, maximizing its ability to interact with stochastically growing and shortening kinetochore microtubules. Each pericentromere loop is ∼50 kb in size and is organized further into secondary loops that are displaced from the primary spindle axis. Cohesin and condensin are integral to mechanisms of loop formation and generating resistance to outward forces from kinesin motors and anti-parallel spindle microtubules. A major unanswered question is how the boundary between chromosome arms and the pericentromere is established and maintained. We used sister chromatid separation and dynamics of LacO arrays distal to the pericentromere to address this issue. Perturbation of chromatin spring components results in 2 distinct phenotypes. In cohesin and condensin mutants sister pericentric LacO arrays separate a defined distance independent of spindle length. In the absence of Smt4, a peptidase that removes SUMO modifications from proteins, pericentric LacO arrays separate in proportion to spindle length increase. Deletion of Smt4, unlike depletion of cohesin and condensin, causes stretching of both proximal and distal pericentromere LacO arrays. The data suggest that the sumoylation state of chromatin topology adjusters, including cohesin, condensin, and topoisomerase II in the pericentromere, contribute to chromatin spring properties as well as the sister cohesion boundary.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences; Northwestern University; Evanston, IL USA
| | - Chloe E Snider
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Kerry Bloom
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
26
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
27
|
A mathematical model of force generation by flexible kinetochore-microtubule attachments. Biophys J 2014; 106:998-1007. [PMID: 24606925 DOI: 10.1016/j.bpj.2014.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 01/26/2023] Open
Abstract
Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.
Collapse
|
28
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
29
|
Chacón JM, Mukherjee S, Schuster BM, Clarke DJ, Gardner MK. Pericentromere tension is self-regulated by spindle structure in metaphase. ACTA ACUST UNITED AC 2014; 205:313-24. [PMID: 24821839 PMCID: PMC4018788 DOI: 10.1083/jcb.201312024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pericentromere tension in yeast is substantial and is tightly self-regulated by the metaphase mitotic spindle through adjustments in spindle structure. During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4–6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted.
Collapse
Affiliation(s)
- Jeremy M Chacón
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | | |
Collapse
|
30
|
Matsson L. Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:155102. [PMID: 24675365 DOI: 10.1088/0953-8984/26/15/155102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The control mechanism in mitosis and meiosis by which cells decide to inhibit or allow segregation, the so-called spindle assembly checkpoint (SAC), increases the fidelity of chromosome segregation. It acts like a clockwork mechanism which measures time in units of stable attachments of microtubules (MTs) to kinetochores (the order parameter). Stable MT-kinetochore attachments mediate poleward forces and 'unstable' attachments, acting alone or together with motor proteins on kinetochores via chromosomes, antipoleward forces. Stable and unstable attachments could be separated, and the non-equilibrium integrated MT mediated force acting on stably attached kinetochores was derived in a collective interaction (Matsson 2009 J. Phys.: Condens. Matter 21 502101), in which kinetochores were treated as rigid protein complexes. As forces and tension in that model became equally distributed in all bioriented sister chromatid (SC) pairs, segregation was inhibited without need of a 'wait-anaphase' signal. In this generalization, the kinetochore is divided into an inner chromatin proximal complex and an outer MT proximal complex, and the integrated MT mediated force is divided into an integrated poleward and an integrated antipoleward force. The model also describes the collective interaction of condensin I with chromatin, which together with the MT mediated dynamics yields the putative in vivo tension in kinetochores and centromeric and pericentromeric chromatin, as a non-linear function of the order parameter. Supported by the compaction force and an increased stiffness in chromatin towards the end of metaphase, the two opposing integrated MT mediated poleward forces, together with metaphase oscillations, induce a swift and synchronized anaphase onset by first increasing the intra-kinetochore stretch. This increase lowers the SAC energy threshold, making a cleavage by separase of all cohesin tethering SC pairs in anaphase energetically possible, thereby reducing the risk for aneuploidy and cancer. It is also shown how this risk might increase in condensin I depleted cells. Moreover, a solution is provided to the fundamental statistical physics problem with a system containing an increasing number of particles (molecular complexes) that become strongly correlated in space.
Collapse
Affiliation(s)
- Leif Matsson
- Department of Physics, University of Gothenburg, Göteborg, SE-412 96, Sweden
| |
Collapse
|
31
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
32
|
Abstract
In recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle.
Collapse
Affiliation(s)
- Brendan Evano
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | |
Collapse
|
33
|
Stephens AD, Quammen CW, Chang B, Haase J, Taylor RM, Bloom K. The spatial segregation of pericentric cohesin and condensin in the mitotic spindle. Mol Biol Cell 2013; 24:3909-19. [PMID: 24152737 PMCID: PMC3861086 DOI: 10.1091/mbc.e13-06-0325] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022] Open
Abstract
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Cory W. Quammen
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Binny Chang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Julian Haase
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Russell M. Taylor
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
34
|
Centromere tethering confines chromosome domains. Mol Cell 2013; 52:819-31. [PMID: 24268574 DOI: 10.1016/j.molcel.2013.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022]
Abstract
The organization of chromosomes into territories plays an important role in a wide range of cellular processes, including gene expression, transcription, and DNA repair. Current understanding has largely excluded the spatiotemporal dynamic fluctuations of the chromatin polymer. We combine in vivo chromatin motion analysis with mathematical modeling to elucidate the physical properties that underlie the formation and fluctuations of territories. Chromosome motion varies in predicted ways along the length of the chromosome, dependent on tethering at the centromere. Detachment of a tether upon inactivation of the centromere results in increased spatial mobility. A confined bead-spring chain tethered at both ends provides a mechanism to generate observed variations in local mobility as a function of distance from the tether. These predictions are realized in experimentally determined higher effective spring constants closer to the centromere. The dynamic fluctuations and territorial organization of chromosomes are, in part, dictated by tethering at the centromere.
Collapse
|
35
|
Stephens AD, Snider CE, Haase J, Haggerty RA, Vasquez PA, Forest MG, Bloom K. Individual pericentromeres display coordinated motion and stretching in the yeast spindle. J Cell Biol 2013; 203:407-16. [PMID: 24189271 PMCID: PMC3824013 DOI: 10.1083/jcb.201307104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/22/2013] [Indexed: 12/12/2022] Open
Abstract
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chloe E. Snider
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Julian Haase
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel A. Haggerty
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula A. Vasquez
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Gregory Forest
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, Department of Mathematics, and Department Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
36
|
Chacón JM, Gardner MK. Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin. Cell Mol Bioeng 2013; 6:406-417. [PMID: 24563677 DOI: 10.1007/s12195-013-0306-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The chemotherapy drug Cisplatin (cis-diamminedichloroplatinum(II)) induces crosslinks within and between DNA strands, and between DNA and nearby proteins. Therefore, Cisplatin-treated cells which progress into cell division may do so with altered chromosome mechanical properties. This could have important consequences for the successful completion of mitosis. Using Total Internal Reflection Fluorescence (TIRF) microscopy of live Cisplatin-treated Saccharomyces cerevisiae cells, we found that metaphase mitotic spindles have disorganized kinetochores relative to untreated cells, and also that there is increased variability in the chromosome stretching distance between sister centromeres. This suggests that chromosome stiffness may become more variable after Cisplatin treatment. We explored the effect of variable chromosome stiffness during mitosis using a stochastic model in which kinetochore microtubule dynamics were regulated by tension imparted by stretched sister chromosomes. Consistent with experimental results, increased variability of chromosome stiffness in the model led to disorganization of kinetochores in simulated metaphase mitotic spindles. Furthermore, the variability in simulated chromosome stretching tension was increased as chromosome stiffness became more variable. Because proper chromosome stretching tension may serve as a signal that is required for proper progression through mitosis, tension variability could act to impair this signal and thus prevent proper mitotic progression. Our results suggest a possible mitotic mode of action for the anti-cancer drug Cisplatin.
Collapse
Affiliation(s)
- Jeremy M Chacón
- Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA 55455
| | - Melissa K Gardner
- Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
37
|
Stephens AD, Haggerty RA, Vasquez PA, Vicci L, Snider CE, Shi F, Quammen C, Mullins C, Haase J, Taylor RM, Verdaasdonk JS, Falvo MR, Jin Y, Forest MG, Bloom K. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. ACTA ACUST UNITED AC 2013; 200:757-72. [PMID: 23509068 PMCID: PMC3601350 DOI: 10.1083/jcb.201208163] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force. The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rago F, Cheeseman IM. Review series: The functions and consequences of force at kinetochores. ACTA ACUST UNITED AC 2013; 200:557-65. [PMID: 23460675 PMCID: PMC3587826 DOI: 10.1083/jcb.201211113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chromosome segregation requires the generation of force at the kinetochore—the multiprotein structure that facilitates attachment of chromosomes to spindle microtubules. This force is required both to move chromosomes and to signal the formation of proper bioriented attachments. To understand the role of force in these processes, it is critical to define how force is generated at kinetochores, the contributions of this force to chromosome movement, and how the kinetochore is structured and organized to withstand and respond to force. Classical studies and recent work provide a framework to dissect the mechanisms, functions, and consequences of force at kinetochores.
Collapse
Affiliation(s)
- Florencia Rago
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 0214, USA
| | | |
Collapse
|
39
|
Hara Y, Kimura A. An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos. Mol Biol Cell 2013; 24:1411-9. [PMID: 23468523 PMCID: PMC3639052 DOI: 10.1091/mbc.e12-07-0528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mitotic spindle is a diamond-shaped molecular apparatus crucial for chromosomal segregation. The regulation of spindle length is well studied, but little is known about spindle width. Previous studies suggested that the spindle can self-organize to maintain a constant aspect ratio between its length and width against physical perturbations. Here we determine the widths of metaphase spindles of various sizes observed during embryogenesis in Caenorhabditis elegans, including small spindles obtained by knocking down the tpxl-1 or spd-2 gene. The spindle width correlates well with the spindle length, but the aspect ratio between the spindle length and spindle width is not constant, indicating an allometric relationship between these parameters. We characterize how DNA quantity (ploidy) affects spindle shape by using haploid and polyploid embryos. We find that the length of the hypotenuse, which corresponds to the distance from the apex of the metaphase plate to the spindle pole, remains constant in each cell stage, regardless of ploidy. On the basis of the quantitative data, we deduce an allometric equation that describes the spindle width as a function of the length of the hypotenuse and ploidy. On the basis of this equation, we propose a force-balance model to determine the spindle width.
Collapse
Affiliation(s)
- Yuki Hara
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
40
|
Goulet A, Moores C. New insights into the mechanism of force generation by kinesin-5 molecular motors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:419-66. [PMID: 23809441 DOI: 10.1016/b978-0-12-407696-9.00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 motors are members of a superfamily of microtubule-dependent ATPases and are widely conserved among eukaryotes. Kinesin-5s typically form homotetramers with pairs of motor domains located at either end of a dumbbell-shaped molecule. This quaternary structure enables cross-linking and ATP-driven sliding of pairs of microtubules, although the exact molecular mechanism of this activity is still unclear. Kinesin-5 function has been characterized in greatest detail in cell division, although a number of interphase roles have also been defined. The kinesin-5 ATPase is tuned for slow microtubule sliding rather than cellular transport and-in vertebrates-can be inhibited specifically by allosteric small molecules currently in cancer clinical trials. The biophysical and structural basis of kinesin-5 mechanochemistry is being elucidated and has provided further insight into kinesin-5 activities. However, it is likely that the precise mechanism of these important motors has evolved according to functional context and regulation in individual organisms.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
41
|
Samejima K, Samejima I, Vagnarelli P, Ogawa H, Vargiu G, Kelly DA, de Lima Alves F, Kerr A, Green LC, Hudson DF, Ohta S, Cooke CA, Farr CJ, Rappsilber J, Earnshaw WC. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. ACTA ACUST UNITED AC 2012; 199:755-70. [PMID: 23166350 PMCID: PMC3514791 DOI: 10.1083/jcb.201202155] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the shaping of mitotic chromosomes, KIF4 and condensin work in parallel to promote lateral chromatid compaction and in opposition to topoisomerase IIα, which shortens the chromatid arms. Mitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic “X” shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the “intrinsic structure” of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lansdorp PM, Falconer E, Tao J, Brind'Amour J, Naumann U. Epigenetic differences between sister chromatids? Ann N Y Acad Sci 2012; 1266:1-6. [PMID: 22901250 DOI: 10.1111/j.1749-6632.2012.06505.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Semi-conservative replication ensures that the DNA sequence of sister chromatids is identical except for replication errors and variation in the length of telomere repeats resulting from replicative losses and variable end processing. What happens with the various epigenetic marks during DNA replication is less clear. Many chromatin marks are likely to be copied onto both sister chromatids in conjunction with DNA replication, whereas others could be distributed randomly between sister chromatids. Epigenetic differences between sister chromatids could also emerge in a more predictable manner, for example, following processes that are associated with lagging strand DNA replication. The resulting epigenetic differences between sister chromatids could result in different gene expression patterns in daughter cells. This possibility has been difficult to test because techniques to distinguish between parental sister chromatids require analysis of single cells and are not obvious. Here, we briefly review the topic of sister chromatid epigenetics and discuss how the identification of sister chromatids in cells could change the way we think about asymmetric cell divisions and stochastic variation in gene expression between cells in general and paired daughter cells in particular.
Collapse
Affiliation(s)
- Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
Collapse
|
44
|
Gossett AJ, Lieb JD. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 2012; 8:e1002771. [PMID: 22737086 PMCID: PMC3380831 DOI: 10.1371/journal.pgen.1002771] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 05/01/2012] [Indexed: 11/23/2022] Open
Abstract
Previous studies in Saccharomyces cerevisiae established that depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds of genes. To probe the mechanism of this transcriptional de-repression, we depleted nucleosomes in vivo by conditional repression of histone H3 transcription. We then measured the resulting changes in transcription by RNA–seq and in chromatin organization by MNase–seq. This experiment also bears on the degree to which trans-acting factors and DNA–encoded elements affect nucleosome position and occupancy in vivo. We identified ∼60,000 nucleosomes genome wide, and we classified ∼2,000 as having preferentially reduced occupancy following H3 depletion and ∼350 as being preferentially retained. We found that the in vivo influence of DNA sequences that favor or disfavor nucleosome occupancy increases following histone H3 depletion, demonstrating that nucleosome density contributes to moderating the influence of DNA sequence on nucleosome formation in vivo. To identify factors important for influencing nucleosome occupancy and position, we compared our data to 40 existing whole-genome data sets. Factors associated with promoters, such as histone acetylation and H2A.z incorporation, were enriched at sites of nucleosome loss. Nucleosome retention was linked to stabilizing marks such as H3K36me2. Notably, the chromatin remodeler Isw2 was uniquely associated with retained occupancy and altered positioning, consistent with Isw2 stabilizing histone–DNA contacts and centering nucleosomes on available DNA in vivo. RNA–seq revealed a greater number of de-repressed genes (∼2,500) than previous studies, and these genes exhibited reduced nucleosome occupancy in their promoters. In summary, we identify factors likely to influence nucleosome stability under normal growth conditions and the specific genomic locations at which they act. We find that DNA–encoded nucleosome stability and chromatin composition dictate which nucleosomes will be lost under conditions of limiting histone protein and that this, in turn, governs which genes are susceptible to a loss of regulatory fidelity. Chromatin is formed by wrapping 146 bp of DNA around a disc-shaped complex of proteins called histones. These protein–DNA structures are known as nucleosomes. Nucleosomes help to regulate gene transcription, because nucleosomes compete with transcription factors for access to DNA. The precise positioning and level of nucleosome occupancy are known to be vital for transcriptional regulation, but the mechanisms that regulate the position and occupancy of nucleosomes are not fully understood. Recently, many studies have focused on the role of DNA sequence and chromatin remodeling proteins. Here, we manipulate the concentration of histone proteins in the cell to determine which nucleosomes are most susceptible to changes in occupancy and position. We find that the chromatin-associated proteins Sir2 and Tup1, and the chromatin remodelers Isw2 and Rsc8, are associated with stabilized nucleosomes. Histone acetylation and incorporation of the histone variant H2A.z are the factors most highly associated with destabilized nucleosomes. Certain DNA sequence properties also contribute to stability. The data identify factors likely to influence nucleosome stability and show a direct link between changes in chromatin and changes in transcription upon histone depletion.
Collapse
Affiliation(s)
- Andrea J. Gossett
- Department of Biology, Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Department of Biology, Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Verdaasdonk JS, Gardner R, Stephens AD, Yeh E, Bloom K. Tension-dependent nucleosome remodeling at the pericentromere in yeast. Mol Biol Cell 2012; 23:2560-70. [PMID: 22593210 PMCID: PMC3386219 DOI: 10.1091/mbc.e11-07-0651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dynamics of histones under tension in the pericentromere depends on RSC and ISW2 chromatin remodeling. The underlying pericentromeric chromatin forms a platform that is required to maintain kinetochore structure when under spindle-based tension. Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis.
Collapse
Affiliation(s)
- Jolien S Verdaasdonk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
46
|
Gay G, Courtheoux T, Reyes C, Tournier S, Gachet Y. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation. ACTA ACUST UNITED AC 2012; 196:757-74. [PMID: 22412019 PMCID: PMC3308688 DOI: 10.1083/jcb.201107124] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.
Collapse
Affiliation(s)
- Guillaume Gay
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la proliferation, Université de Toulouse, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
47
|
FitzHarris G. Anaphase B precedes anaphase A in the mouse egg. Curr Biol 2012; 22:437-44. [PMID: 22342753 DOI: 10.1016/j.cub.2012.01.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/14/2012] [Accepted: 01/20/2012] [Indexed: 11/29/2022]
Abstract
Segregation of chromosomes at the time of cell division is achieved by the microtubules and associated molecules of the spindle. Chromosomes attach to kinetochore microtubules (kMTs), which extend from the spindle pole region to kinetochores assembled upon centromeric DNA. In most animal cells studied, chromosome segregation occurs as a result of kMT shortening, which causes chromosomes to move toward the spindle poles (anaphase A). Anaphase A is typically followed by a spindle elongation that further separates the chromosomes (anaphase B). The experiments presented here provide the first detailed analysis of anaphase in a live vertebrate oocyte and show that chromosome segregation is initially driven by a significant spindle elongation (anaphase B), which is followed by a shortening of kMTs to fully segregate the chromosomes (anaphase A). Loss of tension across kMTs at anaphase onset produces a force imbalance, allowing the bipolar motor kinesin-5 to drive early anaphase B spindle elongation and chromosome segregation. Early anaphase B spindle elongation determines the extent of chromosome segregation and the size of the resulting cells. The vertebrate egg therefore employs a novel mode of anaphase wherein spindle elongation caused by loss of k-fiber tension is harnessed to kick-start chromosome segregation prior to anaphase A.
Collapse
Affiliation(s)
- Greg FitzHarris
- University College London Institute for Women's Health, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
48
|
Laha S, Das SP, Hajra S, Sanyal K, Sinha P. Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest. BMC Genet 2011; 12:83. [PMID: 21943249 PMCID: PMC3190345 DOI: 10.1186/1471-2156-12-83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/23/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Metaphase cells have short spindles for efficient bi-orientation of chromosomes. The cohesin proteins hold sister chromatids together, creating Sister Chromatid Cohesion (SCC) that helps in the maintenance of short spindle lengths in metaphase. The budding yeast protein Chl1p, which has human homologs, is required for DNA damage repair, recombination, transcriptional silencing and aging. This protein is also needed to establish SCC between sister chromatids in S-phase. RESULTS In the present study we have further characterized Chl1p for its role in the yeast Saccharomyces cerevisiae when cells are under replication stress. We show that when DNA replication is arrested by hydroxyurea (HU), the chl1 mutation causes growth deficiency and a mild loss in cell viability. Although both mutant and wild-type cells remained arrested with undivided nuclei, mutant cells had mitotic spindles, which were about 60-80% longer than wild-type spindles. Spindle extension occurred in S-phase in the presence of an active S-phase checkpoint pathway. Further, the chl1 mutant did not show any kinetochore-related defect that could have caused spindle extension. These cells were affected in the retention of SCC in that they had only about one-fourth of the normal levels of the cohesin subunit Scc1p at centromeres, which was sufficient to bi-orient the chromosomes. The mutant cells showed defects in SCC, both during its establishment in S-phase and in its maintenance in G2. Mutants with partial and pericentromeric cohesion defects also showed spindle elongation when arrested in S-phase by HU. CONCLUSIONS Our work shows that Chl1p is required for normal growth and cell viability in the presence of the replication block caused by HU. The absence of this protein does not, however, compromize the replication checkpoint pathway. Even though the chl1 mutation gives synthetic lethal interactions with kinetochore mutations, its absence does not affect kinetochore function; kinetochore-microtubule interactions remain unperturbed. Further, chl1 cells were found to lose SCC at centromeres in both S- and G2 phases, showing the requirement of Chl1p for the maintenance of cohesion in G2 phase of these cells. This work documents for the first time that SCC is an important determinant of spindle size in the yeast Saccharomyces cerevisiae when genotoxic agents cause S-phase arrest of cells.
Collapse
Affiliation(s)
| | - Shankar P Das
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA-01604, USA
| | - Sujata Hajra
- R&D Manager (Molecular Biology), HiMedia Laboratories Pvt. Ltd., Mumbai, India
| | - Kaustuv Sanyal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064, India
| | - Pratima Sinha
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata
| |
Collapse
|
49
|
Verdaasdonk JS, Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 2011; 12:320-32. [PMID: 21508988 DOI: 10.1038/nrm3107] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fidelity during chromosome segregation is essential to prevent aneuploidy. The proteins and chromatin at the centromere form a unique site for kinetochore attachment and allow the cell to sense and correct errors during chromosome segregation. Centromeric chromatin is characterized by distinct chromatin organization, epigenetics, centromere-associated proteins and histone variants. These include the histone H3 variant centromeric protein A (CENPA), the composition and deposition of which have been widely investigated. Studies have examined the structural and biophysical properties of the centromere and have suggested that the centromere is not simply a 'landing pad' for kinetochore formation, but has an essential role in mitosis by assembling and directing the organization of the kinetochore.
Collapse
Affiliation(s)
- Jolien S Verdaasdonk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
50
|
Stephens AD, Haase J, Vicci L, Taylor RM, Bloom K. Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 2011; 193:1167-80. [PMID: 21708976 PMCID: PMC3216333 DOI: 10.1083/jcb.201103138] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/25/2011] [Indexed: 01/18/2023] Open
Abstract
Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Biology and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Julian Haase
- Department of Biology and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Leandra Vicci
- Department of Biology and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Russell M. Taylor
- Department of Biology and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|