1
|
Mazzi C, Savazzi S, Silvanto J. On the “blindness” of blindsight: What is the evidence for phenomenal awareness in the absence of primary visual cortex (V1)? Neuropsychologia 2019; 128:103-108. [DOI: 10.1016/j.neuropsychologia.2017.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
2
|
Mazzi C, Tagliabue CF, Mazzeo G, Savazzi S. Reliability in reporting perceptual experience: Behaviour and electrophysiology in hemianopic patients. Neuropsychologia 2019; 128:119-126. [PMID: 29355647 PMCID: PMC6562273 DOI: 10.1016/j.neuropsychologia.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 12/02/2022]
Abstract
Patients with hemianopia can present with the so called blindsight phenomenon: the ability to perform above chance in the absence of acknowledged awareness. Proper awareness reports are, thus, crucial to distinguish pure forms of blindsight from forms of conscious, yet degraded, vision. It has, in fact, been recently shown that 1) dichotomous and graded measures to assess awareness can lead to different behavioural results in patients with hemianopia and that 2) different grades of perceptual clarity show different electrophysiological correlates in healthy participants. Here, in hemianopic patients, we assessed awareness by means of the four-point Perceptual Awareness Scale (PAS) and investigated its neural correlates with Event Related Potentials (ERPs). Results showed that patients, in most of the cases, can rate the clarity of their perceptual experience in a graded manner. Moreover, graded perceptual experiences correlated with the amplitude of deflections in ERPs. These results call for the need to assess perceptual awareness with graded measures and for the importance to use electrophysiological data to correlate behaviour with neural processing.
Collapse
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Chiara Francesca Tagliabue
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Gaetano Mazzeo
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
3
|
Chen CY, Hafed ZM. Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons. Front Neural Circuits 2018; 12:58. [PMID: 30087598 PMCID: PMC6066560 DOI: 10.3389/fncir.2018.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023] Open
Abstract
The primate superior colliculus is traditionally studied from the perspectives of gaze control, target selection, and selective attention. However, this structure is also visually responsive, and it is the primary visual structure in several species. Thus, understanding the visual tuning properties of the primate superior colliculus is important, especially given that the superior colliculus is part of an alternative visual pathway running in parallel to the predominant geniculo-cortical pathway. In recent previous studies, we have characterized receptive field organization and spatial frequency tuning properties in the primate (rhesus macaque) superior colliculus. Here, we explored additional aspects like orientation tuning, putative center-surround interactions, and temporal frequency tuning characteristics of visually-responsive superior colliculus neurons. We found that orientation tuning exists in the primate superior colliculus, but that such tuning is relatively moderate in strength. We also used stimuli of different sizes to explore contrast sensitivity and center-surround interactions. We found that stimulus size within a visual receptive field primarily affects the slope of contrast sensitivity curves without altering maximal firing rate. Additionally, sustained firing rates, long after stimulus onset, strongly depend on stimulus size, and this is also reflected in local field potentials. This suggests the presence of inhibitory interactions within and around classical receptive fields. Finally, primate superior colliculus neurons exhibit temporal frequency tuning for frequencies lower than 30 Hz, with critical flicker fusion frequencies of <20 Hz. These results support the hypothesis that the primate superior colliculus might contribute to visual performance, likely by mediating coarse, but rapid, object detection and identification capabilities for the purpose of facilitating or inhibiting orienting responses. Such mediation may be particularly amplified in blindsight subjects who lose portions of their primary visual cortex and therefore rely on alternative visual pathways including the pathway through the superior colliculus.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
4
|
Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proc Natl Acad Sci U S A 2017; 114:E10475-E10483. [PMID: 29133428 PMCID: PMC5715784 DOI: 10.1073/pnas.1714801114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unilateral damage to the primary visual cortex (V1) leads to clinical blindness in the opposite visual hemifield, yet nonconscious ability to transform unseen visual input into motor output can be retained, a condition known as "blindsight." Here we combined psychophysics, functional magnetic resonance imaging, and tractography to investigate the functional and structural properties that enable the developing brain to partly overcome the effects of early V1 lesion in one blindsight patient. Visual stimuli appeared in either the intact or blind hemifield and simple responses were given with either the left or right hand, thereby creating conditions where visual input and motor output involve the same or opposite hemisphere. When the V1-damaged hemisphere was challenged by incoming visual stimuli, or controlled manual responses to these unseen stimuli, the corpus callosum (CC) dynamically recruited areas in the visual dorsal stream and premotor cortex of the intact hemisphere to compensate for altered visuomotor functions. These compensatory changes in functional brain activity were paralleled by increased connections in posterior regions of the CC, where fibers connecting homologous areas of the parietal cortex course.
Collapse
|
5
|
Mazzi C, Mazzeo G, Savazzi S. Markers of TMS-evoked visual conscious experience in a patient with altitudinal hemianopia. Conscious Cogn 2017; 54:143-154. [PMID: 28215463 DOI: 10.1016/j.concog.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) of the occipital and parietal cortices can induce phosphenes, i.e. visual sensations of light without light entering the eyes. In this paper, we adopted a TMS-EEG interactive co-registration approach with a patient (AM) showing altitudinal hemianopia. Occipital and parietal cortices in both hemispheres were stimulated while concurrently recording EEG signal. Results showed that, for all sites, neural activity differentially encoding for the presence vs. absence of a conscious experience could be found in a cluster of electrodes close to the stimulation site at an early (70ms) time-period after TMS. The present data indicate that both occipital and parietal sites are independent early gatekeepers of perceptual awareness, thus, in line with evidence in favor of early correlates of perceptual awareness. Moreover, these data support the valuable contribution of the TMS-EEG approach in patients with visual field defects to investigate the neural processes responsible for perceptual awareness.
Collapse
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Gaetano Mazzeo
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
6
|
Waves of awareness for occipital and parietal phosphenes perception. Neuropsychologia 2015; 70:114-25. [DOI: 10.1016/j.neuropsychologia.2015.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
7
|
Silvanto J. Why is "blindsight" blind? A new perspective on primary visual cortex, recurrent activity and visual awareness. Conscious Cogn 2014; 32:15-32. [PMID: 25263935 DOI: 10.1016/j.concog.2014.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
The neuropsychological phenomenon of blindsight has been taken to suggest that the primary visual cortex (V1) plays a unique role in visual awareness, and that extrastriate activation needs to be fed back to V1 in order for the content of that activation to be consciously perceived. The aim of this review is to evaluate this theoretical framework and to revisit its key tenets. Firstly, is blindsight truly a dissociation of awareness and visual detection? Secondly, is there sufficient evidence to rule out the possibility that the loss of awareness resulting from a V1 lesion simply reflects reduced extrastriate responsiveness, rather than a unique role of V1 in conscious experience? Evaluation of these arguments and the empirical evidence leads to the conclusion that the loss of phenomenal awareness in blindsight may not be due to feedback activity in V1 being the hallmark awareness. On the basis of existing literature, an alternative explanation of blindsight is proposed. In this view, visual awareness is a "global" cognitive function as its hallmark is the availability of information to a large number of perceptual and cognitive systems; this requires inter-areal long-range synchronous oscillatory activity. For these oscillations to arise, a specific temporal profile of neuronal activity is required, which is established through recurrent feedback activity involving V1 and the extrastriate cortex. When V1 is lesioned, the loss of recurrent activity prevents inter-areal networks on the basis of oscillatory activity. However, as limited amount of input can reach extrastriate cortex and some extrastriate neuronal selectivity is preserved, computations involving comparison of neural firing rates within a cortical area remain possible. This enables "local" read-out from specific brain regions, allowing for the detection and discrimination of basic visual attributes. Thus blindsight is blind due to lack of "global" long-range synchrony, and it functions via "local" neural readout from extrastriate areas.
Collapse
Affiliation(s)
- Juha Silvanto
- University of Westminster, Faculty of Science and Technology, Department of Psychology, 309 Regent Street, W1B 2HW London, UK; Brain Research Unit, O.V. Lounasmaa Laboratory, School of Science, Aalto University, PO BOX 15100, 00076 Aalto, Finland.
| |
Collapse
|
8
|
Abstract
The primary visual cortex (V1) is the principal telencephalic recipient of visual input in humans and monkeys. It is unique among cortical areas in that its destruction results in chronic blindness. However, certain patients with V1 damage, though lacking visual awareness, exhibit visually guided behavior: blindsight. This phenomenon, together with evidence from electrophysiological, neuroimaging, and psychophysical experiments, has led to speculation that V1 activity has a special or direct role in generating conscious perception. To explore this issue, this article reviews experiments that have used two powerful paradigms--stimulus-induced perceptual suppression and chronic V1 ablation--each of which disrupts the ability to perceive salient visual stimuli. Focus is placed on recent neurophysiological, behavioral, and functional imaging studies from the nonhuman primate that shed light on V1's role in conscious awareness. In addition, anatomical pathways that relay visual information to the cortex during normal vision and in blindsight are reviewed. Although the critical role of V1 in primate vision follows naturally from its position as a bottleneck of visual signals, little evidence supports its direct contribution to visual awareness.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
|
10
|
|
11
|
Mogensen J. Reorganization of the injured brain: implications for studies of the neural substrate of cognition. Front Psychol 2011; 2:7. [PMID: 21713186 PMCID: PMC3111425 DOI: 10.3389/fpsyg.2011.00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/05/2011] [Indexed: 01/16/2023] Open
Abstract
In the search for a neural substrate of cognitive processes, a frequently utilized method is the scrutiny of post-traumatic symptoms exhibited by individuals suffering focal injury to the brain. For instance, the presence or absence of conscious awareness within a particular domain may, combined with knowledge of which regions of the brain have been injured, provide important data in the search for neural correlates of consciousness. Like all studies addressing the consequences of brain injury, however, such research has to face the fact that in most cases, post-traumatic impairments are accompanied by a "functional recovery" during which symptoms are reduced or eliminated. The apparent contradiction between localization and recovery, respectively, of functions constitutes a problem to almost all aspects of cognitive neuroscience. Several lines of investigation indicate that although the brain remains highly plastic throughout life, the post-traumatic plasticity does not recreate a copy of the neural mechanisms lost to injury. Instead, the uninjured parts of the brain are functionally reorganized in a manner which - in spite of not recreating the basic information processing lost to injury - is able to allow a more or less complete return of the surface phenomena (including manifestations of consciousness) originally impaired by the trauma. A novel model [the Reorganization of Elementary Functions-model] of these processes is presented - and some of its implications discussed relative to studies of the neural substrates of cognition and consciousness.
Collapse
Affiliation(s)
- Jesper Mogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
12
|
Silvanto J, Rees G. What does Neural Plasticity Tell us about Role of Primary Visual Cortex (V1) in Visual Awareness? Front Psychol 2011; 2:6. [PMID: 21713187 PMCID: PMC3111426 DOI: 10.3389/fpsyg.2011.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/04/2011] [Indexed: 11/21/2022] Open
Abstract
The complete loss of visual awareness resulting from a lesion to the primary visual cortex (V1) suggests that this region is indispensable for conscious visual perception. There are however a number cases of conscious perception in the absence of V1 which appear to challenge this conclusion. These include reports of patients with bilateral V1 lesions sustained at an early age whose conscious vision has spontaneously recovered, as well as stroke patients who have recovered some conscious vision with the help of rehabilitation programs. In addition, the phenomenon of hemianopic completion and percepts induced by brain stimulation suggest that V1 may not be necessary for conscious perception in all circumstances. Furthermore, that the visual abilities in the cat are associated with the recovery of normal extrastriate tuning properties rather than emulation of V1 functions suggests that there is nothing unique about the functional properties of this region in visual awareness. Rather, the dramatic effect of a V1 lesion on visual awareness may be due to its role in providing the majority of extrastriate visual input, the loss of which abolishes normal neural responsiveness throughout the visual cortex.
Collapse
Affiliation(s)
- Juha Silvanto
- Brain Research Unit, Low Temperature Laboratory and Advanced Magnetic Imaging Centre, School of Science and Technology, Aalto University Espoo, Finland
| | | |
Collapse
|
13
|
|
14
|
Abnormal functional connectivity between ipsilesional V5/MT+ and contralesional striate cortex (V1) in blindsight. Exp Brain Res 2009; 193:645-50. [DOI: 10.1007/s00221-009-1712-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|