1
|
Sanmartín-Villar I, Jeanson R. Early social context does not influence behavioral variation at adulthood in ants. Curr Zool 2021; 68:335-344. [PMID: 35592349 PMCID: PMC9113369 DOI: 10.1093/cz/zoab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
Early experience can prepare offspring to adapt their behaviors to the environment they are likely to encounter later in life. In several species of ants, colonies show ontogenic changes in the brood-to-worker ratio that are known to have an impact on worker morphology. However, little information is available on the influence of fluctuations in the early social context on the expression of behavior in adulthood. Using the ant Lasius niger, we tested whether the brood-to-worker ratio during larval stages influenced the level of behavioral variability at adult stages. We raised batches of 20 or 180 larvae in the presence of 60 workers until adulthood. We then quantified the activity level and wall-following tendency of callow workers on 10 successive trials to test the prediction that larvae reared under a high brood-to-worker ratio should show greater behavioral variations. We found that manipulation of the brood-to-worker ratio influenced the duration of development and the size of individuals at emergence. We detected no influence of early social context on the level of between- or within-individual variation measured for individual activity level or on wall-following behavior. Our study suggests that behavioral traits may be more canalized than morphological traits.
Collapse
Affiliation(s)
- Iago Sanmartín-Villar
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Universidade de Vigo, ECOEVO Lab, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| | - Raphaël Jeanson
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Ślipiński P, Trigos-Peral G, Maák I, Wojciechowska I, Witek M. The influence of age and development temperature on the temperature-related foraging risk of Formica cinerea ants. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03029-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Climate change and the subsequent increase of global temperature are the most current and important threats to biodiversity. Despite the importance of temperature, our knowledge about the level of behavioural and physiological adaptations of ant species from temperate regions to cope with high temperatures is limited compared to the broad knowledge of typical thermal specialists from warmer regions. In the current study, we investigated the temperature-related foraging risk of xerothermic ant species from the temperate climate in Europe, Formica cinerea. Our aims were to check how an increase in external soil temperature affects the foraging activity of workers and how the temperature during development and worker age affects foraging activity in high temperatures. Based on our results, we can draw the following conclusions: (1) the majority of workers utilize a risk-aversive strategy in relation to foraging in high surface temperatures; (2) pupal development temperature affects the risk taken by adult workers: workers that developed in a higher temperature forage more often but for shorter intervals compared to workers that developed in a lower temperature; (3) age is an important factor in temperature-related foraging activity, as with increasing age, workers forage significantly longer at the highest temperatures. Our study is one of the first to assess the potential factors that can affect the foraging risk of ants from a temperate climate in high ambient temperatures.
Significance statement
Our study is the first direct test of workers' age and the development temperature of pupae on the thermal-related foraging strategy of adult F. cinerea workers. It shows that worker age and the development temperature of pupae interact to promote tolerance of thermal stress. We found that with increasing age, workers are prone to forage significantly longer at the highest and riskiest temperatures. Workers that developed in the high temperature (28°C) foraged more often but for shorter intervals compared to workers that developed in the lower temperature (20°C). Interestingly, the factor of age is more significant for ants that developed in the higher temperature of 28°C; the foraging time of these ants significantly increased with their age.
Collapse
|
3
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
4
|
Villalta I, Oms CS, Angulo E, Molinas-González CR, Devers S, Cerdá X, Boulay R. Does social thermal regulation constrain individual thermal tolerance in an ant species? J Anim Ecol 2020; 89:2063-2076. [PMID: 32445419 DOI: 10.1111/1365-2656.13268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/06/2020] [Indexed: 11/30/2022]
Abstract
In ants, social thermal regulation is the collective maintenance of a nest temperature that is optimal for individual colony members. In the thermophilic ant Aphaenogaster iberica, two key behaviours regulate nest temperature: seasonal nest relocation and variable nest depth. Outside the nest, foragers must adapt their activity to avoid temperatures that exceed their thermal limits. It has been suggested that social thermal regulation constrains physiological and morphological thermal adaptations at the individual level. We tested this hypothesis by examining the foraging rhythms of six populations of A. iberica, which were found at different elevations (from 100 to 2,000 m) in the Sierra Nevada mountain range of southern Spain. We tested the thermal resistance of individuals from these populations under controlled conditions. Janzen's climatic variability hypothesis (CVH) states that greater climatic variability should select for organisms with broader temperature tolerances. We found that the A. iberica population at 1,300 m experienced the most extreme temperatures and that ants from this population had the highest heat tolerance (LT50 = 57.55°C). These results support CVH's validity at microclimatic scales, such as the one represented by the elevational gradient in this study. Aphaenogaster iberica maintains colony food intake levels across different elevations and mean daily temperatures by shifting its rhythm of activity. This efficient colony-level thermal regulation and the significant differences in individual heat tolerance that we observed among the populations suggest that behaviourally controlled thermal regulation does not constrain individual physiological adaptations for coping with extreme temperatures.
Collapse
Affiliation(s)
- Irene Villalta
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France.,Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Cristela Sánchez Oms
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France.,Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | | | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Raphaël Boulay
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France
| |
Collapse
|
5
|
Mesquita-Neto JN, Paiva EAS, Galetto L, Schlindwein C. Nectar Secretion of Floral Buds of Tococa guianensis Mediates Interactions With Generalist Ants That Reduce Florivory. FRONTIERS IN PLANT SCIENCE 2020; 11:627. [PMID: 32508868 PMCID: PMC7253585 DOI: 10.3389/fpls.2020.00627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The specialised mutualism between Tococa guianensis and ants housed in its leaf domatia is a well-known example of myrmecophily. A pollination study on this species revealed that flowers in the bud stage exude a sugary solution that is collected by ants. Given the presence of this unexpected nectar secretion, we investigated how, where, and when floral buds of T. guianensis secret nectar and what function it serves. We studied a population of T. guianensis occurring in a swampy area in the Cerrado of Brazil by analyzing the chemical composition and secretion dynamics of the floral-bud nectar and the distribution and ultrastructure of secretory tissues. We also measured flower damage using ant-exclusion experiments. Floral bud nectar was secreted at the tip of the petals, which lack a typical glandular structure but possess distinctive mesophyll due to the presence of numerous calcium oxalate crystals. The nectar, the production of which ceased after flower opening, was composed mainly of sucrose and low amounts of glucose and fructose. Nectar was consumed by generalist ants and sporadically by stingless bees. Ant exclusion experiments resulted in significantly increased flower damage. The floral nectar of T. guianensis is produced during the bud stage. This bud-nectar has the extranuptial function of attracting generalist ants that reduce florivory. Pollen is the unique floral resource attracting pollinators during anthesis. Tococa guianensis, thus, establishes relationships with two functional groups of ant species: specialist ants acting against herbivory and generalist ants acting against florivory.
Collapse
Affiliation(s)
- José Neiva Mesquita-Neto
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Investigación en Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Elder Antônio Sousa Paiva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Galetto
- Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Clemens Schlindwein
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Groh C, Rössler W. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee. INSECTS 2020; 11:insects11010043. [PMID: 31936165 PMCID: PMC7023465 DOI: 10.3390/insects11010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/18/2023]
Abstract
Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.
Collapse
|
7
|
Jeanson R. Within-individual behavioural variability and division of labour in social insects. ACTA ACUST UNITED AC 2019; 222:222/10/jeb190868. [PMID: 31127006 DOI: 10.1242/jeb.190868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Division of labour, whereby individuals divide the workload in a group, is a recurrent property of social living. The current conceptual framework for division of labour in social insects is provided by the response-threshold model. This model posits that the differences between individuals (i.e. between-individual variability) in responsiveness to task-associated stimuli is a key feature for task specialisation. The consistency of individual behaviours (i.e. within-individual variability) in task performance represents an additional but little-considered component driving robust patterns of division of labour. On the one hand, the presence of workers with a high level of within-individual variability presumably allows colonies to rapidly adapt to external fluctuations. On the other hand, a reduced degree of within-individual variability promotes a stricter specialisation in task performance, thereby limiting the costs of task switching. The ideal balance between flexibility and canalisation probably varies depending on the developmental stage of the colony to satisfy its changing needs. Here, I introduce the main sources of within-individual variability in behaviours in social insects and I review neural correlates accompanying the changes in behavioural flexibility. I propose the hypothesis that the positive scaling between group size and the intensity of task specialisation, a relationship consistently reported both within and between taxa, may rely on reduced within-individual variability via self-organised processes linked to the quality of brood care. Overall, I emphasise the need for a more comprehensive characterisation of the response dynamics of individuals to better understand the mechanisms shaping division of labour in social insects.
Collapse
Affiliation(s)
- Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 9, France
| |
Collapse
|
8
|
Bernadou A, Schrader L, Pable J, Hoffacker E, Meusemann K, Heinze J. Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc Biol Sci 2018; 285:rspb.2018.1468. [PMID: 30158313 DOI: 10.1098/rspb.2018.1468] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 11/12/2022] Open
Abstract
Cooperation and division of labour are fundamental in the 'major transitions' in evolution. While the factors regulating cell differentiation in multi-cellular organisms are quite well understood, we are just beginning to unveil the mechanisms underlying individual specialization in cooperative groups of animals. Clonal ants allow the study of which factors influence task allocation without confounding variation in genotype and morphology. Here, we subjected larvae and freshly hatched workers of the clonal ant Platythyrea punctata to different rearing conditions and investigated how these manipulations affected division of labour among pairs of oppositely treated, same-aged clonemates. High rearing temperature, physical stress, injury and malnutrition increased the propensity of individuals to become subordinate foragers rather than dominant reproductives. This is reflected in changed gene regulation: early stages of division of labour were associated with different expression of genes involved in nutrient signalling pathways, metabolism and the phenotypic response to environmental stimuli. Many of these genes appear to be capable of responding to a broad range of stressors. They might link environmental stimuli to behavioural and phenotypic changes and could therefore be more broadly involved in caste differentiation in social insects. Our experiments also shed light on the causes of behavioural variation among genetically identical individuals.
Collapse
Affiliation(s)
- Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüffersstraße 1, 48149 Münster, Germany
| | - Julia Pable
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elisabeth Hoffacker
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Karen Meusemann
- Department of Evolutionary, Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Sandoval-Molina MA, Zavaleta-Mancera HA, León-Solano HJ, Solache-Ramos LT, Jenner B, Morales-Rodríguez S, Patrón-Soberano A, Janczur MK. First description of extrafloral nectaries in Opuntia robusta (Cactaceae): Anatomy and ultrastructure. PLoS One 2018; 13:e0200422. [PMID: 30016339 PMCID: PMC6049920 DOI: 10.1371/journal.pone.0200422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
To our knowledge, there are no studies about the structure and ecological function of extrafloral nectaries (EFNs) in Opuntia robusta. This is the first description of EFNs in O. robusta, where young spines have an interesting structure and a secreting function, which are different from EFNs described in other Cactaceae species. We used light, scanning-electron, and transmission-electron microscopy to examine morphology, anatomy, and ultrastructure of the secretory spines in areoles in female and hermaphrodite individuals of O. robusta. Young cladodes develop areoles with modified and secretory spines as EFNs only active during the early growth phase. EFNs are non-vascularized structures, with no stomata, that consist of a basal meristematic tissue, a middle elongation region, and an apical secretory cone formed by large globular epidermal cells, containing nectar and medullar elongated cells. We observed the presence of Golgi apparatus, vesicles and plastids in the medullar and sup-epidermal cells of the spine. We propose that the nectar is stored in the globular cells at the apex of the spine and secreted by breaking through the globular cells or by pores. We recorded a more frequent presence of ants on younger cladode sprouts producing young secreting spines: this result is parallel with the predictions of Optimal Defense Hypothesis, which states that younger plant organs should be better defended than older ones because their loss produces a higher fitness impairment. Although Diaz-Castelazo's hypothesis states that a more complex structure of EFNs correlates with their lower among-organs dispersion, comparing to less complex EFNs, non-vascularized structure of EFNs in O. robusta is not associated with their higher among-organs dispersion likened to O. stricta, which produces vascularized EFNs. We provide evidence that this characteristic is not a good taxonomic feature of Opuntia genus. Moreover, the comparison of EFNs of O. robusta and O. stricta suggests that the hypothesis of Diaz-Castelazo should be revised: it is rather a rule but not a law.
Collapse
Affiliation(s)
- Mario Alberto Sandoval-Molina
- Research Group in Ecology and Evolutionary Biology, Department of Natural Sciences, Autonomous University of the State of Mexico, Toluca, Estado de México, México
- Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | - Hilda Araceli Zavaleta-Mancera
- Unidad de Microscopía Electrónica, Postgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco, Estado de México
| | - Héctor Javier León-Solano
- Research Group in Ecology and Evolutionary Biology, Department of Natural Sciences, Autonomous University of the State of Mexico, Toluca, Estado de México, México
- Graduate Program in Agricultural Sciences and Natural Resources (PCARN), Autonomous University of the State of Mexico, Toluca, Estado de México, México
| | - Lupita Tzenyatze Solache-Ramos
- Research Group in Ecology and Evolutionary Biology, Department of Natural Sciences, Autonomous University of the State of Mexico, Toluca, Estado de México, México
- Graduate Program in Agricultural Sciences and Natural Resources (PCARN), Autonomous University of the State of Mexico, Toluca, Estado de México, México
| | - Bartosz Jenner
- Evidence Generation & Clinical Research RB, Hull, United Kingdom
| | | | | | - Mariusz Krzysztof Janczur
- Research Group in Ecology and Evolutionary Biology, Department of Natural Sciences, Autonomous University of the State of Mexico, Toluca, Estado de México, México
- Graduate Program in Agricultural Sciences and Natural Resources (PCARN), Autonomous University of the State of Mexico, Toluca, Estado de México, México
| |
Collapse
|
10
|
Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Kay J, Menegazzi P, Mildner S, Roces F, Helfrich-Förster C. The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain. J Biol Rhythms 2018; 33:255-271. [PMID: 29589522 DOI: 10.1177/0748730418764738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.
Collapse
Affiliation(s)
- Janina Kay
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stephanie Mildner
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
12
|
Ronque MU, Fourcassié V, Oliveira PS. Ecology and field biology of two dominant Camponotus ants (Hymenoptera: Formicidae) in the Brazilian savannah. J NAT HIST 2018. [DOI: 10.1080/00222933.2017.1420833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mariane U.V. Ronque
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, C.P. 6109, Universidade Estadual de Campinas, Campinas, Brazil
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, UMR CNRS Nº5169, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Paulo S. Oliveira
- Departamento de Biologia Animal, C.P. 6109, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
13
|
Halboth F, Roces F. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging. Naturwissenschaften 2017; 104:82. [PMID: 28929237 DOI: 10.1007/s00114-017-1504-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/24/2022]
Abstract
Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.
Collapse
Affiliation(s)
- Florian Halboth
- Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Flavio Roces
- Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
14
|
Zhukovskaya MI, Polyanovsky AD. Biogenic Amines in Insect Antennae. Front Syst Neurosci 2017; 11:45. [PMID: 28701930 PMCID: PMC5487433 DOI: 10.3389/fnsys.2017.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022] Open
Abstract
Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA) and its metabolic precursor tyramine (TA) affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA) modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.
Collapse
Affiliation(s)
- Marianna I Zhukovskaya
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| | - Andrey D Polyanovsky
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| |
Collapse
|
15
|
Oms CS, Cerdá X, Boulay R. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants? Naturwissenschaften 2017; 104:42. [PMID: 28470449 DOI: 10.1007/s00114-017-1464-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
Abstract
Unlike natural selection, phenotypic plasticity allows organisms to respond quickly to changing environmental conditions. However, plasticity may not always be adaptive. In insects, body size and other morphological measurements have been shown to decrease as temperature increases. This relationship may lead to a physiological conflict in ants, where larger body size and longer legs often confer better thermal resistance. Here, we tested the effect of developmental temperature (20, 24, 28 or 32 °C) on adult thermal resistance in the thermophilic ant species Aphaenogaster senilis. We found that no larval development occurred at 20 °C. However, at higher temperatures, developmental speed increased as expected and smaller adults were produced. In thermal resistance tests, we found that ants reared at 28 and 32 °C had half-lethal temperatures that were 2 °C higher than those of ants reared at 24 °C. Thus, although ants reared at higher temperatures were smaller in size, they were nonetheless more thermoresistant. These results show that A. senilis can exploit phenotypic plasticity to quickly adjust its thermal resistance to local conditions and that this process is independent of morphological adaptations. This mechanism may be particularly relevant given current rapid climate warming.
Collapse
Affiliation(s)
- Cristela Sánchez Oms
- Estación Biologica de Doñana, CSIC, Avenida Americo Vespucio 26, 41092, Sevilla, Spain
- Institute of Insect Biology, Parc de Grandmont, 37200, Tours, France
| | - Xim Cerdá
- Estación Biologica de Doñana, CSIC, Avenida Americo Vespucio 26, 41092, Sevilla, Spain
| | - Raphaël Boulay
- Institute of Insect Biology, Parc de Grandmont, 37200, Tours, France.
| |
Collapse
|
16
|
Mildner S, Roces F. Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times. PLoS One 2017; 12:e0169244. [PMID: 28099496 PMCID: PMC5242425 DOI: 10.1371/journal.pone.0169244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Daily activities within an ant colony need precise temporal organization, and an endogenous clock appears to be essential for such timing processes. A clock drives locomotor rhythms in isolated workers in a number of ant species, but its involvement in activities displayed in the social context is unknown. We compared locomotor rhythms in isolated individuals and behavioral rhythms in the social context of workers of the ant Camponotus rufipes. Both forager and nurse workers exhibited circadian rhythms in locomotor activity under constant conditions, indicating the involvement of an endogenous clock. Activity was mostly nocturnal and synchronized with the 12:12h light-dark-cycle. To evaluate whether rhythmicity was maintained in the social context and could be synchronized with non-photic zeitgebers such as feeding times, daily behavioral activities of single workers inside and outside the nest were quantified continuously over 24 hours in 1656 hours of video recordings. Food availability was limited to a short time window either at day or at night, thus mimicking natural conditions of temporally restricted food access. Most foragers showed circadian foraging behavior synchronized with food availability, either at day or nighttime. When isolated thereafter in single locomotor activity monitors, foragers mainly displayed arrhythmicity. Here, high mortality suggested potential stressful effects of the former restriction of food availability. In contrast, nurse workers showed high overall activity levels in the social context and performed their tasks all around the clock with no circadian pattern, likely to meet the needs of the brood. In isolation, the same individuals exhibited in turn strong rhythmic activity and nocturnality. Thus, endogenous activity rhythms were inhibited in the social context, and timing of daily behaviors was flexibly adapted to cope with task demands. As a similar socially-mediated plasticity in circadian rhythms was already shown in honey bees, the temporal organization in C. rufipes and honey bees appear to share similar basic features.
Collapse
Affiliation(s)
- Stephanie Mildner
- Department of Behavioral Biology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Flavio Roces
- Department of Behavioral Biology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Falibene A, Roces F, Rössler W, Groh C. Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain. Front Behav Neurosci 2016; 10:73. [PMID: 27147994 PMCID: PMC4835446 DOI: 10.3389/fnbeh.2016.00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/30/2016] [Indexed: 02/01/2023] Open
Abstract
Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.
Collapse
Affiliation(s)
- Agustina Falibene
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg Würzburg, Germany
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg Würzburg, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg Würzburg, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg Würzburg, Germany
| |
Collapse
|
18
|
Hammel B, Vollet-Neto A, Menezes C, Nascimento FS, Engels W, Grüter C. Soldiers in a Stingless Bee. Am Nat 2016; 187:120-9. [DOI: 10.1086/684192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Nagel M, Kleineidam CJ. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes. Front Behav Neurosci 2015; 9:240. [PMID: 26388753 PMCID: PMC4558426 DOI: 10.3389/fnbeh.2015.00240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant’s ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature.
Collapse
Affiliation(s)
- Manuel Nagel
- Behavioral Neurobiology, Department of Biology, University of Konstanz Konstanz, Germany
| | - Christoph J Kleineidam
- Behavioral Neurobiology, Department of Biology, University of Konstanz Konstanz, Germany
| |
Collapse
|
20
|
Ronque MUV, Azevedo-Silva M, Mori GM, Souza AP, Oliveira PS. Three ways to distinguish species: using behavioural, ecological, and molecular data to tell apart two closely related ants,Camponotus renggeriandCamponotus rufipes(Hymenoptera: Formicidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariane U. V. Ronque
- Programa de Pós-Graduação em Ecologia; Instituto de Biologia; Universidade Estadual de Campinas; C.P. 6109 13083-862 Campinas SP Brazil
| | - Marianne Azevedo-Silva
- Programa de Pós-Graduação em Ecologia; Instituto de Biologia; Universidade Estadual de Campinas; C.P. 6109 13083-862 Campinas SP Brazil
| | - Gustavo M. Mori
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; C.P. 6010 13083-875 Campinas SP Brazil
- Agência Paulista de Tecnologia dos Agronegócios; C.P. 28, Pólo Regional Centro Sul 13400-970 Piracicaba SP Brazil
| | - Anete P. Souza
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; C.P. 6010 13083-875 Campinas SP Brazil
- Departamento de Biologia Vegetal; Universidade Estadual de Campinas; C.P. 6109 13083-970 Campinas SP Brazil
| | - Paulo S. Oliveira
- Departamento de Biologia Animal; Universidade Estadual de Campinas; C.P. 6109 13083-862 Campinas SP Brazil
| |
Collapse
|
21
|
When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10818-015-9205-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Falibene A, Josens R. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:14-20. [PMID: 25285641 DOI: 10.1016/j.jinsphys.2014.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/03/2023]
Abstract
Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency.
Collapse
Affiliation(s)
- Agustina Falibene
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II, C1428 EHA Buenos Aires, Argentina
| | - Roxana Josens
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II, C1428 EHA Buenos Aires, Argentina.
| |
Collapse
|
23
|
Increased grooming after repeated brood care provides sanitary benefits in a clonal ant. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Jeanson R, Weidenmüller A. Interindividual variability in social insects - proximate causes and ultimate consequences. Biol Rev Camb Philos Soc 2013; 89:671-87. [PMID: 24341677 DOI: 10.1111/brv.12074] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within-group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little-explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little-explored avenues for future research on how within-colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects.
Collapse
Affiliation(s)
- Raphaël Jeanson
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France; Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France
| | | |
Collapse
|
25
|
Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2012.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Duarte A, Pen I, Keller L, Weissing FJ. Evolution of self-organized division of labor in a response threshold model. Behav Ecol Sociobiol 2012; 66:947-957. [PMID: 22661824 PMCID: PMC3353103 DOI: 10.1007/s00265-012-1343-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 11/30/2022]
Abstract
Division of labor in social insects is determinant to their ecological success. Recent models emphasize that division of labor is an emergent property of the interactions among nestmates obeying to simple behavioral rules. However, the role of evolution in shaping these rules has been largely neglected. Here, we investigate a model that integrates the perspectives of self-organization and evolution. Our point of departure is the response threshold model, where we allow thresholds to evolve. We ask whether the thresholds will evolve to a state where division of labor emerges in a form that fits the needs of the colony. We find that division of labor can indeed evolve through the evolutionary branching of thresholds, leading to workers that differ in their tendency to take on a given task. However, the conditions under which division of labor evolves depend on the strength of selection on the two fitness components considered: amount of work performed and on worker distribution over tasks. When selection is strongest on the amount of work performed, division of labor evolves if switching tasks is costly. When selection is strongest on worker distribution, division of labor is less likely to evolve. Furthermore, we show that a biased distribution (like 3:1) of workers over tasks is not easily achievable by a threshold mechanism, even under strong selection. Contrary to expectation, multiple matings of colony foundresses impede the evolution of specialization. Overall, our model sheds light on the importance of considering the interaction between specific mechanisms and ecological requirements to better understand the evolutionary scenarios that lead to division of labor in complex systems.
Collapse
Affiliation(s)
- Ana Duarte
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, Groningen, 9700 CC Netherlands
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, UK
| | - Ido Pen
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, Groningen, 9700 CC Netherlands
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Franz J. Weissing
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, Groningen, 9700 CC Netherlands
| |
Collapse
|
27
|
Duarte A, Weissing FJ, Pen I, Keller L. An Evolutionary Perspective on Self-Organized Division of Labor in Social Insects. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145017] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Duarte
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Franz J. Weissing
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Ido Pen
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015 Switzerland;
| |
Collapse
|
28
|
Richardson TO, Christensen K, Franks NR, Jensen HJ, Sendova-Franks AB. Ants in a labyrinth: a statistical mechanics approach to the division of labour. PLoS One 2011; 6:e18416. [PMID: 21541019 PMCID: PMC3081813 DOI: 10.1371/journal.pone.0018416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
Division of labour (DoL) is a fundamental organisational principle in human
societies, within virtual and robotic swarms and at all levels of biological
organisation. DoL reaches a pinnacle in the insect societies where the most
widely used model is based on variation in response thresholds among
individuals, and the assumption that individuals and stimuli are well-mixed.
Here, we present a spatially explicit model of DoL. Our model is inspired by
Pierre de Gennes' 'Ant in a Labyrinth' which laid the foundations
of an entire new field in statistical mechanics. We demonstrate the emergence,
even in a simplified one-dimensional model, of a spatial patterning of
individuals and a right-skewed activity distribution, both of which are
characteristics of division of labour in animal societies. We then show using a
two-dimensional model that the work done by an individual within an activity
bout is a sigmoidal function of its response threshold. Furthermore, there is an
inverse relationship between the overall stimulus level and the skewness of the
activity distribution. Therefore, the difference in the amount of work done by
two individuals with different thresholds increases as the overall stimulus
level decreases. Indeed, spatial fluctuations of task stimuli are minimised at
these low stimulus levels. Hence, the more unequally labour is divided amongst
individuals, the greater the ability of the colony to maintain homeostasis.
Finally, we show that the non-random spatial distribution of individuals within
biological and social systems could be caused by indirect (stigmergic)
interactions, rather than direct agent-to-agent interactions. Our model links
the principle of DoL with principles in the statistical mechanics and provides
testable hypotheses for future experiments.
Collapse
Affiliation(s)
- Thomas Owen Richardson
- Department of Engineering, Design and Mathematics, University of the West of England, Bristol, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Ruchty M, Roces F, Kleineidam CJ. Detection of Minute Temperature Transients by Thermosensitive Neurons in Ants. J Neurophysiol 2010; 104:1249-56. [DOI: 10.1152/jn.00390.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antennae of leaf-cutting ants are equipped with sensilla coeloconica that house three receptor neurons, one of which is thermosensitive. Using convective heat (air at different temperatures), we investigated the physiological characteristics of the thermosensitive neuron associated with the sensilla coeloconica in the leaf-cutting ant Atta vollenweideri. The thermosensitive neuron very quickly responds to a drop in temperature with a brief phasic increase (50 ms) in spike rate and thus classifies as cold receptor (ambient temperature = 24°C). The short latency and the brief phasic response enable the thermosensitive neuron to follow temperature transients up to an estimated frequency of around 5 Hz. Although the neuron responds as a cold receptor, it is extremely sensitive to warm stimuli. A temperature increase of only 0.005°C already leads to a pronounced decrease in the resting activity of the thermosensitive neuron. Through sensory adaptation, the sensitivity to temperature transients is maintained over a wide range of ambient temperatures (18–30°C). We conclude that the thermosensitive neuron of the sensilla coeloconica is adapted to detect minute temperature transients, providing the ants with thermal information of their microenvironment, which they may use for orientation.
Collapse
Affiliation(s)
- Markus Ruchty
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg; and
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg; and
| | - Christoph Johannes Kleineidam
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg; and
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
Abstract
Differing task thresholds among workers are crucial to the efficient allocation of work in self-organized insect colonies. New evidence suggests that the rearing temperature of ant pupae causes lifelong changes in an ant's response threshold to temperature.
Collapse
|