1
|
Cowley M, Garfield AS, Madon-Simon M, Charalambous M, Clarkson RW, Smalley MJ, Kendrick H, Isles AR, Parry AJ, Carney S, Oakey RJ, Heisler LK, Moorwood K, Wolf JB, Ward A. Developmental programming mediated by complementary roles of imprinted Grb10 in mother and pup. PLoS Biol 2014; 12:e1001799. [PMID: 24586114 PMCID: PMC3934836 DOI: 10.1371/journal.pbio.1001799] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/15/2014] [Indexed: 01/21/2023] Open
Abstract
Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.
Collapse
Affiliation(s)
- Michael Cowley
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - Alastair S. Garfield
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Marta Madon-Simon
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Marika Charalambous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Cardiff, United Kingdom
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Psychology, Cardiff University, Cardiff, United Kingdom
| | - Aled J. Parry
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Sara Carney
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - Lora K. Heisler
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Kim Moorwood
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Jason B. Wolf
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrew Ward
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|
3
|
Haig D. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity (Edinb) 2013; 113:96-103. [PMID: 24129605 DOI: 10.1038/hdy.2013.97] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022] Open
Abstract
Common misconceptions of the 'parental conflict' theory of genomic imprinting are addressed. Contrary to widespread belief, the theory defines conditions for cooperation as well as conflict in mother-offspring relations. Moreover, conflict between genes of maternal and paternal origin is not the same as conflict between mothers and fathers. In theory, imprinting can evolve either because genes of maternal and paternal origin have divergent interests or because offspring benefit from a phenotypic match, or mismatch, to one or other parent. The latter class of models usually require maintenance of polymorphism at imprinted loci for the maintenance of imprinted expression. The conflict hypothesis does not require maintenance of polymorphism and is therefore a more plausible explanation of evolutionarily conserved imprinting.
Collapse
Affiliation(s)
- D Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Curley JP. Is there a genomically imprinted social brain? Bioessays 2011; 33:662-8. [PMID: 21805481 DOI: 10.1002/bies.201100060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 01/24/2023]
Abstract
Imprinted genes (IGs) are expressed or silenced according to their parent-of-origin. These genes are known to play a role in regulating offspring growth, development and infant behaviors such as suckling and ultrasonic calls. In adults, neurally expressed IGs coordinate several behaviors including maternal care, sex, feeding, emotionality, and cognition. However, despite evidence from human psychiatric disorders and evolutionary theory that maternally and paternally expressed genes should also regulate social behavior, little empirical data from mouse research exists. This paper discusses data from a recent study (Garfield et al., 2011) that the IG Grb10 governs unique aspects of mouse social behavior and interprets the relevance of these findings for the future of this field.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, New York, NY, USA.
| |
Collapse
|