1
|
Azad KN, Alam MNE, Nagata M, Tomano S, Ono H, Sugai K, Hirohashi N. Males conditionally inseminate at three female body locations according to female mating history and female maturity status in a squid. Sci Rep 2024; 14:11702. [PMID: 38777827 PMCID: PMC11111733 DOI: 10.1038/s41598-024-62062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In some squids, such as those in the family Loliginidae, upon copulation, females receive and store male-delivered sperm capsules, spermatangia, at two different body locations: the buccal membrane and the distal end of the oviduct. This insemination site dimorphism is associated with alternative reproductive strategies. However, in Loliolus sumatrensis, a species of Loliginidae, the females possess three insemination sites: buccal membrane (BM), basal left IV arm (ARM) and lateral head behind the left eye (EYE), therefore we studied such the unusual phenomena. We developed microsatellite markers and genotyped the paternity of each spermatangium on three sites. We found multiple paternity at every single site and simultaneous usage of all three sites by a few males. The seasonal dynamics of a population in the Seto Inland Sea revealed a set priority for the initial use of insemination sites as BM, followed by ARM and then EYE, whereas the maximum number of stored spermatangia was greater in EYE > ARM > BM. Female maturity status was correlated with the usage pattern of insemination sites but not with the number of stored spermatangia at any insemination site. These results suggest that a male squid inseminates at different locations according to female mating history and female maturity status.
Collapse
Affiliation(s)
- Kamrun Naher Azad
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Nur E Alam
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| | - Makoto Nagata
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Satoshi Tomano
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Hiroki Ono
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kyoko Sugai
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| | - Noritaka Hirohashi
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan.
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan.
| |
Collapse
|
2
|
Hosono S, Masuda Y, Tokioka S, Kawamura T, Iwata Y. Squid male alternative reproductive tactics are determined by birth date. Proc Biol Sci 2024; 291:20240156. [PMID: 38654644 PMCID: PMC11040241 DOI: 10.1098/rspb.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Alternative reproductive tactics (ARTs) are discontinuous phenotypes associated with reproduction, observed in males of many species. Typically, large males adopt a tactic of competing with rivals for mating, while small males adopt a tactic of stealing fertilization opportunities from the large males. The 'birth date hypothesis', proposing that the date of birth influences the determination of each male's reproductive tactic, has been tested only in teleost fish to date. Here, the birth date hypothesis was tested in ARTs of Japanese spear squid Heterololigo bleekeri (consort/sneaker) by analysing statolith growth increments. The birth date significantly differed between consorts (early-hatched) and sneakers (late-hatched). However, no differences were detected in growth history up to 100 days from hatching. Most immature males caught during the reproductive season were larger than sneakers, and their hatch date was similar to that of consorts, suggesting that these immature males had already been following a life-history pathway as a consort. These results indicate that ARTs of H. bleekeri are determined based on their hatch date in early life. This study firstly suggests that the birth date hypothesis applies to aquatic invertebrates, suggesting that the mechanism by which birth date determines the individual phenotype is a phenomenon more common than previously believed.
Collapse
Affiliation(s)
- Shota Hosono
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Yoshio Masuda
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Miyagi, Japan
| | - Shun Tokioka
- Shiogama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Tomohiko Kawamura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
3
|
Does the Rainbow Trout Ovarian Fluid Promote the Spermatozoon on Its Way to the Egg? Int J Mol Sci 2021; 22:ijms22179519. [PMID: 34502430 PMCID: PMC8430650 DOI: 10.3390/ijms22179519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the "turn-and-run" behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)-sperm interaction reflect the specific features of the spawning process in this species.
Collapse
|
4
|
Sato N. A review of sperm storage methods and post-copulatory sexual selection in the Cephalopoda. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
In many animal phyla, females have a unique sperm storage organ (SSO). Post-copulatory sexual selection is a powerful driving force of SSO evolution. SSOs are generally considered to have evolved through sexual antagonistic coevolution between male genitalia and the SSO and/or cryptic female choice (CFC). In cephalopods, sperm transfer and fertilization are conducted through complex processes, and sperm storage methods show inter-species variation. In some species, males implant spermatangia superficially under the female skin, and then sperm released from the spermatangia are transferred into a seminal receptacle (SR). Deep-sea cephalopods, which lack a SR, have instead evolved a deep-implanting method by which the spermatangium is embedded deep in the musculature of the mantle wall of the female. In some species, the female stores whole spermatangia within a spermatangium pocket. Because the males of most species do not insert an intromittent organ into the female when transferring sperm, SSO evolution may have been influenced by CFC alone. This review summarizes the sperm storage methods and the mechanisms of post-copulatory sexual selection in cephalopods and it is proposed that these diverse methods evolved as adaptive mechanisms through post-copulatory sexual selection.
Collapse
Affiliation(s)
- Noriyosi Sato
- Applied Biological Science, Department of Fisheries, School of Marine Science and Technology, Tokai University, Orido 3-20-1 Shimizu Shizuoka, Japan
| |
Collapse
|
5
|
Iwata Y, Sato N, Hirohashi N, Watanabe Y, Sauer WHH, Shaw PW. Sperm competition risk affects ejaculate strategy in terms of sperm number but not sperm size in squid. J Evol Biol 2021; 34:1352-1361. [PMID: 34165857 DOI: 10.1111/jeb.13894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Abstract
In polygamous species, the mode of sperm storage in females influences evolution of sperm quantitative and qualitative traits because it provides the arena for sperm competition, cryptic female choice and fertilization processes. In this study, we compared ejaculate traits of two squid species, Heterololigo bleekeri and Loligo reynaudii. Both species show dimorphic sperm traits associated with alternative reproductive tactics where consort and sneaker males transfer sperm to different storage sites within a female (on the oviduct and near the mouth, respectively). Due to differences in reproductive behaviours and sperm placement, sperm competition risk is expected to be higher in sneakers than in consorts of both species and higher overall in L. reynaudii. Our results demonstrate that the instantaneous number of released sperm is adjusted to the expected sperm competition risk via an elaborate sperm package. Consort sperm are similar in size; however, sneaker sperm have a significantly longer flagellum in H. bleekeri than in L. reynaudii, most likely due to intra-tactic conflicts associated with sperm storage conditions. From consideration of the different mating tactics, we suggest that while levels of sperm competition determine quantitative traits, sperm quality traits are determined more by the mode of sperm storage and fertilization.
Collapse
Affiliation(s)
- Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Noriyosi Sato
- School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | | | - Yoshiro Watanabe
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Warwick H H Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Paul W Shaw
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa.,Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
6
|
Strategic adjustment of ejaculate quality in response to variation of the socio-sexual environment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Effect of sperm surface oligosaccharides in sperm passage into sperm storage tubules in Japanese quail (Coturnix japonica). Anim Reprod Sci 2021; 227:106731. [PMID: 33676322 DOI: 10.1016/j.anireprosci.2021.106731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
In birds, the ejaculated spermatozoa do not directly pass to the site of fertilization but rather are stored initially in specialized structures, referred to as sperm storage tubules (SSTs), located in the utero-vaginal junction (UVJ) of the oviduct. The fertilizing capacity of spermatozoa in the SSTs is maintained for an extended period (i.e., several days to months). Although many studies have been conducted to ascertain the mechanisms involved in sperm storage, the understanding of the phenomenon is limited. In this study, there was investigation of the effects of sperm surface oligosaccharides in sperm passage into SSTs in Japanese quail. Results from lectin staining of ejaculated spermatozoa indicated galactose/N-Acetylgalactosamine (Gal/GalNAc), N-Acetylglucosamine (GlcNAc) or mannose/glucose (Man/Glc) moieties were present on the sperm surface, indicating the presence of glycoproteins/glycolipids containing these oligosaccharides. When ejaculated spermatozoa were co-incubated with UVJ explants, the lectins derived from Agaricus bisporus and Canavalia ensiformis had marked inhibitory effects on sperm passage into SSTs. Preincubation of UVJ explants with these lectins, however, had no effect indicating there were no effects of UVJ oligosaccharides in this process. Furthermore, none of these lectin had effects on values of sperm motility variables. These results indicate that O-glycans with terminal β-Gal or GalNAc and N-glycans with terminal α-D-Man or α-D-Glc may have functions in the process of sperm passage into SSTs.
Collapse
|
8
|
Sato N, Tsuda SI, Nur E Alam M, Sasanami T, Iwata Y, Kusama S, Inamura O, Yoshida MA, Hirohashi N. Rare polyandry and common monogamy in the firefly squid, Watasenia scintillans. Sci Rep 2020; 10:10962. [PMID: 32620906 PMCID: PMC7334199 DOI: 10.1038/s41598-020-68006-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
In cephalopods, all species are considered to be polyandrous because of their common life history and reproductive traits reflecting a polyandrous mating system. Contrary to this belief, here we show several lines of evidence for monogamy in the firefly squid, Watasenia scintillans. In this species, females are capable of long-term storage of spermatangia, and of egg spawning even after the complete disappearance of males following the breeding season. The stored spermatangia are distributed equally between bilateral pouches under the female’s neck collar. Such a nonrandom pattern of sperm storage prompted us to hypothesize that females might engage in lifetime monandry. Hence, we genotyped female-stored spermatangia and offspring, and found that in 95% of females (18/19), all the spermatangia had been delivered from a single male and all the embryos in a clutch had been sired by spermatozoa from stored spermatangia. In males, throughout the reproductive season, relative testis mass was much smaller in W. scintillans than in all other cephalopods examined previously. The mean number of male-stored spermatophores was ~ 30, equivalent to only 2.5 matings. Our genetic, demographic and morphometrical data agree with a mathematical model predicting that monogyny is favored when potential mates are scarce. Together, these results suggest mutual monogamy in W. scintillans.
Collapse
Affiliation(s)
- Noriyosi Sato
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan.,Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, 424-8610, Japan
| | - Sei-Ichiro Tsuda
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Md Nur E Alam
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka, 422-8529, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Satoshi Kusama
- Uozu Aquarium, 1390 Sanga, Uozu, Toyama, 937-0857, Japan
| | - Osamu Inamura
- Uozu Aquarium, 1390 Sanga, Uozu, Toyama, 937-0857, Japan
| | - Masa-Aki Yoshida
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
9
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
10
|
Marian JEAR, Apostólico LH, Chiao CC, Hanlon RT, Hirohashi N, Iwata Y, Mather J, Sato N, Shaw PW. Male Alternative Reproductive Tactics and Associated Evolution of Anatomical Characteristics in Loliginid Squid. Front Physiol 2019; 10:1281. [PMID: 31680998 PMCID: PMC6803530 DOI: 10.3389/fphys.2019.01281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.
Collapse
Affiliation(s)
- José E A R Marian
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lígia H Apostólico
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Chuan-Chin Chiao
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Roger T Hanlon
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan, Japan
| | - Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Noriyosi Sato
- Department of Fisheries, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Department of Ichthyology & Fisheries Science, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
11
|
Apostólico LH, Marian JEAR. Behavior of "Intermediate" Males of the Dimorphic Squid Doryteuthis pleii Supports an Ontogenetic Expression of Alternative Phenotypes. Front Physiol 2019; 10:1180. [PMID: 31572225 PMCID: PMC6753871 DOI: 10.3389/fphys.2019.01180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
The expression of alternative reproductive tactics (ARTs) by different-sized males of loliginid squids has been extensively investigated. In loliginids, alternative phenotypes are characterized by discontinuous differences in behavior, body size, sperm deposition site, and morphology and functioning of ejaculates. Large consort males guard females, display agonistic behaviors toward rival consort males, and mate with females in the male-parallel (MP) position. Small sneaker males avoid fighting contests and instead adopt furtive behaviors to access females guarded by consort males, mating with females in the head-to-head (HH) posture. Recently, the reappraisal of preserved material from the loliginid squid Doryteuthis pleii showed that intermediate-sized males (so-called “intermediate” males) had both sneaker- and consort-like ejaculates, leading to the hypothesis of them being a transitional stage between both phenotypes. Here, we describe observations made in captivity showing that intermediate males can display agonistic behaviors toward consort males and mate with females in both mating positions, depending on the male’s current reproductive context, i.e., generally in HH, but switching to MP when the female is laying eggs. Such unusual findings of intermediate males simultaneously displaying behaviors of both sneaker and consort males comprise additional evidence corroborating the ontogenetic hypothesis for phenotypic expression of ARTs in this species. Taken together, our results indicate that (1) instead of competing with large consort males for female access and monopolization, small/young males adopt sneaker tactics to obtain mating opportunities, and (2) as they continue to grow, they gradually modify the morphology of their ejaculates and their mating behavior, going through an “intermediate” stage, before becoming large consort males.
Collapse
Affiliation(s)
- Lígia H Apostólico
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José E A R Marian
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Abstract
In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.
Collapse
Affiliation(s)
- Héctor Vicente Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Idán Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
13
|
Apostólico LH, Marian JEAR. From sneaky to bully: reappraisal of male squid dimorphism indicates ontogenetic mating tactics and striking ejaculate transition. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lìgia H Apostólico
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - José E A R Marian
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Postcopulatory Reproductive Strategies in Spermatozoa. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Lin CY, Chiao CC. Female Choice Leads to a Switch in Oval Squid Male Mating Tactics. THE BIOLOGICAL BULLETIN 2017; 233:219-226. [PMID: 29553819 DOI: 10.1086/695718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oval squids are polyandrous, with one female mating with multiple males during the spawning season. There are two alternative male mating tactics used by Sepioteuthis lessoniana. Larger males place spermatophores at the opening of the oviduct using a male-parallel mating posture, whereas smaller males attach spermatophores around the female buccal membrane using a male-upturned mating posture. If the route of egg transportation is taken into consideration, male-parallel mating would be expected to result in higher fertilization success than male-upturned mating. Although these male mating tactics are largely dependent on the body size of the male relative to that of the female, it is unclear how female choice affects the male's mating tactics and his mating success. Squids are highly visual animals, and they communicate through dynamic body patterning. In the present study, we observed that smaller male squids in captivity would attempt to mate with a larger female using the male-parallel tactic repeatedly, but they failed to be successful most of the time because of a rejection signal by the female. In contrast, when the males switched to the male-upturned tactic, the mating success rate was increased significantly, with much less female rejection signal. This finding suggests that female squids signal their mating receptivity visually and that male squids alter their mating tactics accordingly. This is the evidence to support the hypothesis that the switch in male mating tactics depends on female choice in oval squids and that this is transmitted via visual communication.
Collapse
|
16
|
Iida T, Iwata Y, Mohri T, Baba SA, Hirohashi N. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis. Sci Rep 2017; 7:12938. [PMID: 29021593 PMCID: PMC5636881 DOI: 10.1038/s41598-017-13406-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar ‘bent-cane’ shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an ‘overshoot’ trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.
Collapse
Affiliation(s)
- Tomohiro Iida
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Tatsuma Mohri
- Section of Individual Researches, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho Okazaki, 444-8787, Japan
| | - Shoji A Baba
- Ochanomizu University, 2-2-1 Otsuka, Tokyo, 112-8610, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
17
|
Apostólico LH, Marian JEAR. Dimorphic ejaculates and sperm release strategies associated with alternative mating behaviors in the squid. J Morphol 2017; 278:1490-1505. [DOI: 10.1002/jmor.20726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lígia H. Apostólico
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| | - José E. A. R. Marian
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
18
|
Alvarez L. The tailored sperm cell. JOURNAL OF PLANT RESEARCH 2017; 130:455-464. [PMID: 28357612 PMCID: PMC5406480 DOI: 10.1007/s10265-017-0936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 05/28/2023]
Abstract
Sperm are ubiquitous and yet unique. Genes involved in sexual reproduction are more divergent than most genes expressed in non-reproductive tissues. It has been argued that sperm have been altered during evolution more than any somatic cell. Profound variations are found at the level of morphology, motility, search strategy for the egg, and the underlying signalling mechanisms. Sperm evolutionary adaptation may have arisen from sperm competition (sperm from rival males compete within the female's body to fertilize eggs), cryptic female choice (the female's ability to choose among different stored sperm), social cues tuning sperm quality or from the site of fertilization (internal vs. external fertilization), to name a few. Unquestionably, sperm represent an invaluable source for the exploration of biological diversity at the level of signalling, motility, and evolution. Despite the richness in sperm variations, only a few model systems for signalling and motility have been studied in detail. Using fast kinetic techniques, electrophysiological recordings, and optogenetics, the molecular players and the sequence of signalling events of sperm from a few marine invertebrates, mammals, and fish are being elucidated. Furthermore, recent technological advances allow studying sperm motility with unprecedented precision; these studies provide new insights into flagellar motility and navigation in three dimensions (3D). The scope of this review is to highlight variations in motile sperm across species, and discuss the great promise that 3D imaging techniques offer into unravelling sperm mysteries.
Collapse
Affiliation(s)
- Luis Alvarez
- Center of Advanced European Studies and Research (caesar). Institute affiliated with the Max Planck Society, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
19
|
Hirohashi N, Tamura-Nakano M, Nakaya F, Iida T, Iwata Y. Sneaker Male Squid Produce Long-lived Spermatozoa by Modulating Their Energy Metabolism. J Biol Chem 2016; 291:19324-34. [PMID: 27385589 DOI: 10.1074/jbc.m116.737494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Spermatozoa released by males should remain viable until fertilization. Hence, sperm longevity is governed by intrinsic and environmental factors in accordance with the male mating strategy. However, whether intraspecific variation of insemination modes can impact sperm longevity remains to be elucidated. In the squid Heterololigo bleekeri, male dimorphism (consort and sneaker) is linked to two discontinuous insemination modes that differ in place and time. Notably, only sneaker male spermatozoa inseminated long before egg spawning can be stored in the seminal receptacle. We found that sneaker spermatozoa exhibited greater persistence in fertilization competence and flagellar motility than consort ones because of a larger amount of flagellar glycogen. Sneaker spermatozoa also showed higher capacities in glucose uptake and lactate efflux. Lactic acidosis was considered to stabilize CO2-triggered self-clustering of sneaker spermatozoa, thus establishing hypoxia-induced metabolic changes and sperm survival. These results, together with comparative omics analyses, suggest that postcopulatory reproductive contexts define sperm longevity by modulating the inherent energy levels and metabolic pathways.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- From the Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Oki 685-0024, Japan,
| | - Miwa Tamura-Nakano
- the Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Fumio Nakaya
- the Center for Science Education, Osaka Kyoiku University, Osaka 582-858, Japan, and
| | - Tomohiro Iida
- From the Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, Oki 685-0024, Japan
| | - Yoko Iwata
- the Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
20
|
Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol 2016; 12:423-31. [PMID: 26878088 DOI: 10.1517/17425255.2016.1154534] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Carbonic anhydrase inhibitors (CAIs) of the sulfonamide and sulfamate type are clinically used drugs as diuretics, antiglaucoma, antiepileptic, antiobesity and anti-high altitude disease agents. Anticancer agents based on CAIs are also in clinical development for the management of hypoxic, metastatic tumors. Acetazolamide, methazolamide, dichlorophenamide, dorzolamide and brinzolamide are mainly used as antiglaucoma drugs, sulthiame, topiramate and zonisamide as antiepileptic/antiobesity agents, celecoxib and polmacoxib are dual carbonic anhydrase/cycloxygenase inhibitors. Girentuximab, a monoclonal antibody and SLC-0111, a sulfonamide inhibitor, are in clinical trials as anticancer agents. AREAS COVERED The drug interactions with many classes of pharmacological agents are reviewed. Some of these drugs, such as acetazolamide, topiramate and celecoxib show a large number of interactions with non-steroidal anti-inflammatory drugs (NSAIDs), diuretics, antiepileptics, immunosupressants, anticholinesterase drugs, β-blockers, anesthetics, oral contraceptives, anticancer agents, antifungals, anti-mycobacterials, lithium, metformin and clopidogrel. EXPERT OPINION The multiple drug interactions in which CAIs are involved should be carefully considered when such drugs are used in combination with the drug classes mentioned above, as the risks of developing toxicity and serious side effects if the dosages are not adjusted are high. There are also synergistic effects between CAIs and some NSAIDs, anticancer agents and benzodiazepines for the management of cystoid macular edema, some tumor types and neuropathic pain, respectively.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Polo Scientifico, NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Sciences , Università degli Studi di Firenze , 50019 Sesto Fiorentino , Florence , Italy
| |
Collapse
|
21
|
Ferraroni M, Carta F, Scozzafava A, Supuran CT. Thioxocoumarins Show an Alternative Carbonic Anhydrase Inhibition Mechanism Compared to Coumarins. J Med Chem 2015; 59:462-73. [DOI: 10.1021/acs.jmedchem.5b01720] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marta Ferraroni
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- NEUROFARBA
Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
22
|
Fechner S, Alvarez L, Bönigk W, Müller A, Berger TK, Pascal R, Trötschel C, Poetsch A, Stölting G, Siegfried KR, Kremmer E, Seifert R, Kaupp UB. A K(+)-selective CNG channel orchestrates Ca(2+) signalling in zebrafish sperm. eLife 2015; 4:e07624. [PMID: 26650356 PMCID: PMC4749565 DOI: 10.7554/elife.07624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/09/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium in the flagellum controls sperm navigation. In sperm of marine invertebrates and mammals, Ca(2+) signalling has been intensely studied, whereas for fish little is known. In sea urchin sperm, a cyclic nucleotide-gated K(+) channel (CNGK) mediates a cGMP-induced hyperpolarization that evokes Ca(2+) influx. Here, we identify in sperm of the freshwater fish Danio rerio a novel CNGK family member featuring non-canonical properties. It is located in the sperm head rather than the flagellum and is controlled by intracellular pH, but not cyclic nucleotides. Alkalization hyperpolarizes sperm and produces Ca(2+) entry. Ca(2+) induces spinning-like swimming, different from swimming of sperm from other species. The "spinning" mode probably guides sperm into the micropyle, a narrow entrance on the surface of fish eggs. A picture is emerging of sperm channel orthologues that employ different activation mechanisms and serve different functions. The channel inventories probably reflect adaptations to species-specific challenges during fertilization.
Collapse
Affiliation(s)
- Sylvia Fechner
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Thomas K Berger
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - Rene Pascal
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | | | - Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4, Forschungszentrum Jülich, Jülich, Germany
| | - Kellee R Siegfried
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Elisabeth Kremmer
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, München, Germany
| | - Reinhard Seifert
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Abteilung Molekulare Neurosensorik, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
23
|
Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T. The CatSper channel controls chemosensation in sea urchin sperm. EMBO J 2014; 34:379-92. [PMID: 25535245 DOI: 10.15252/embj.201489376] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.
Collapse
Affiliation(s)
- Reinhard Seifert
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Melanie Flick
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Luis Alvarez
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | | | - Ansgar Poetsch
- Ruhr-Universität Bochum Lehrstuhl Biochemie der Pflanzen, Bochum, Germany
| | - Astrid Müller
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Normann Goodwin
- Marine Biological Laboratory, Woods Hole, MA, USA Laboratory of Molecular Signalling, Babraham Institute, Cambridge, UK
| | - Patric Pelzer
- Marine Biological Laboratory, Woods Hole, MA, USA Institut für Anatomie und Zellbiologie, Abteilung für Funktionelle Neuroanatomie, Universität Heidelberg, Heidelberg, Germany
| | - Nachiket D Kashikar
- Marine Biological Laboratory, Woods Hole, MA, USA Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Elisabeth Kremmer
- Helmholtz-Zentrum München, Institut für Molekulare Immunologie, München, Germany
| | - Jan Jikeli
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany
| | | | - Heiner Kuhl
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Dmitry Fridman
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Florian Windler
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timo Strünker
- Center of Advanced European Studies and Research (Caesar), Abteilung Molekulare Neurosensorik, Bonn, Germany Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
24
|
Vullo D, Del Prete S, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg Med Chem 2014; 23:526-31. [PMID: 25533402 DOI: 10.1016/j.bmc.2014.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Gillian M Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
25
|
Bozdag M, Pinard M, Carta F, Masini E, Scozzafava A, McKenna R, Supuran CT. A class of 4-sulfamoylphenyl-ω-aminoalkyl ethers with effective carbonic anhydrase inhibitory action and antiglaucoma effects. J Med Chem 2014; 57:9673-86. [PMID: 25358036 PMCID: PMC4255726 DOI: 10.1021/jm501497m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
We
report a series of 4-sulfamoylphenyl-ω-aminoalkyl ethers
as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The structure–activity
relationship was drawn for the inhibition of four physiologically
relevant isoforms: hCA I, II, IX, and XII. Many of these compounds
were highly effective, low nanomolar inhibitors of all CA isoforms,
whereas several isoform-selective were also identified. X-ray crystal
structures of two new sulfonamides bound to the physiologically dominant
CA II isoform showed the tails of these derivatives bound within the
hydrophobic half of the enzyme active site through van der Waals contacts
with Val135, Leu198, Leu204, Trp209, Pro201, and Pro202 amino acids.
One of the highly water-soluble compound (as trifluoroacetate salt)
showed effective IOP lowering properties in an animal model of glaucoma.
Several fluorescent sulfonamides incorporating either the fluorescein-thiourea
(7a–c) or tetramethylrhodamine-thiourea
(9a,b) moieties were also obtained and showed
interesting CA inhibitory properties for the tumor-associated isoforms
CA IX and XII.
Collapse
Affiliation(s)
- Murat Bozdag
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm 188, Università degli Studi di Firenze , Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Bozdag M, Ferraroni M, Carta F, Vullo D, Lucarini L, Orlandini E, Rossello A, Nuti E, Scozzafava A, Masini E, Supuran CT. Structural Insights on Carbonic Anhydrase Inhibitory Action, Isoform Selectivity, and Potency of Sulfonamides and Coumarins Incorporating Arylsulfonylureido Groups. J Med Chem 2014; 57:9152-67. [DOI: 10.1021/jm501314c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Murat Bozdag
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Laura Lucarini
- Sezione di Farmacologia, Dipartimento di Neuroscienze,
Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno,
6, 56126 Pisa, Italy
| | - Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno,
6, 56126 Pisa, Italy
| | - Andrea Scozzafava
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Emanuela Masini
- Sezione di Farmacologia, Dipartimento di Neuroscienze,
Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Claudiu T. Supuran
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Sezione di Scienze Farmaceutiche, Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino
(NEUROFARBA), Università degli Studi di Firenze, Via Ugo Schiff
6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
27
|
Le Roy N, Jackson DJ, Marie B, Ramos-Silva P, Marin F. The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Front Zool 2014. [DOI: 10.1186/s12983-014-0075-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A. Intracellular pH in sperm physiology. Biochem Biophys Res Commun 2014; 450:1149-58. [PMID: 24887564 PMCID: PMC4146485 DOI: 10.1016/j.bbrc.2014.05.100] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.
Collapse
Affiliation(s)
- Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Omar José
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Ana Laura González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
29
|
Integrative omics analysis reveals differentially distributed proteins in dimorphic euspermatozoa of the squid, Loligo bleekeri. Biochem Biophys Res Commun 2014; 450:1218-24. [DOI: 10.1016/j.bbrc.2014.04.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 01/20/2023]
|
30
|
Spermatangium formation and sperm discharge in the Japanese pygmy squid Idiosepius paradoxus. ZOOLOGY 2014; 117:192-9. [PMID: 24813852 DOI: 10.1016/j.zool.2014.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022]
Abstract
In cephalopods, sperm discharge is an important event not only for sperm transfer but also influencing sperm storage capacity of attached spermatangia (everted spermatophores). To investigate sperm discharge from spermatangia and the condition of naturally attached spermatangia in Japanese pygmy squid (Idiosepius paradoxus) we (i) investigated the morphology of spermatophores and spermatangia, and the process of spermatophore evagination and sperm discharge from spermatangia obtained in vitro; (ii) observed spermatangia that were naturally attached to female squids at 6, 12, 18, 24 and 48 h after copulation to investigate alterations in naturally attached spermatangia with time. The spermatophore of I. paradoxus is slender and cylindrical and consists of a sperm mass, a cement body and an ejaculatory apparatus, which is similar to those of loliginid squids. The spermatangium is fishhook-shaped, its distal end being open and narrow. After the spermatangium is formed, the sperm mass gradually moves to the open end of the spermatangium, from where sperm are released. Sperm discharge is a rapid process immediately after the beginning of sperm release, but within 5 min changes to an intermittent release of sperm. Although the volume of residual spermatozoa differed among spermatangia that were naturally attached to a single individual, the probability that spermatangia would be empty increased with time. Most naturally attached spermatangia discharged almost all of their spermatozoa within 24h after copulation, and no spermatangia were attached to females 48 h after copulation. These results suggest that sperm transfer from the spermatangium to the seminal receptacle must occur within 24h, and that the spermatangium functions as a transient sperm storage organ in pygmy squids.
Collapse
|
31
|
Simmons LW, Beveridge M, Li L, Tan Y, Millar AH. Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid. Evol Dev 2014; 16:101-9. [DOI: 10.1111/ede.12068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Maxine Beveridge
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Lie Li
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - Yew‐Foon Tan
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - A. Harvey Millar
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
32
|
Hirohashi N, Iwata Y. The different types of sperm morphology and behavior within a single species: Why do sperm of squid sneaker males form a cluster? Commun Integr Biol 2013; 6:e26729. [PMID: 24567779 DOI: 10.4161/cib.26729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Some coastal squids exhibit male dimorphism (large and small body size) that is linked to mating behaviors. Large "consort" males compete with other, rival males to copulate with a female, and thereby transfer their spermatophores to her internal site around the oviduct. Small "sneaker" males rush to a single female or copulating pair and transfer spermatophores to her external body surface around the seminal receptacle near the mouth. We previously found that in Loligo bleekeri, sneaker sperm are ~50% longer than consort sperm, and only the sneaker sperm, once ejaculated from the spermatophore (sperm mass), form a cluster because of chemoattraction toward their own respiratory CO2. Here, we report that sperm clusters are able to move en masse. Because a fraction of ejaculated sperm from a sneaker's spermatophore are eventually located in the female's seminal receptacle, we hypothesize that sperm clustering facilitates collective migration to the seminal receptacle or an egg micropyle. Sperm clustering is regarded as a cooperative behavior that may have evolved by sperm competition and/or physical and physiological constraints imposed by male mating tactics.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station; Education and Research Center for Biological Resources; Shimane University; Oki, Shimane, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute; University of Tokyo; Kashiwa, Chiba, Japan
| |
Collapse
|
33
|
Zwart M. CO2 FOR MATING ON THE SLY. J Exp Biol 2013. [DOI: 10.1242/jeb.081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|