1
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide-binding assay reveals recognition determinants and context dependence of short linear motifs. J Biol Chem 2025; 301:108225. [PMID: 39864625 PMCID: PMC11879687 DOI: 10.1016/j.jbc.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as short linear motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called systematic intracellular motif-binding analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at noncore positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK; Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Heinzle C, Höfler A, Yu J, Heid P, Kremer N, Schunk R, Stengel F, Bange T, Boland A, Mayer TU. Positively charged specificity site in cyclin B1 is essential for mitotic fidelity. Nat Commun 2025; 16:853. [PMID: 39833154 PMCID: PMC11747444 DOI: 10.1038/s41467-024-55669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis. HeLa cells expressing pocket mutant cyclin B1 are strongly delayed in anaphase onset due to multiple defects in mitotic spindle function and timely activation of the E3 ligase APC/C. Pocket integrity is essential for APC/C phosphorylation particularly at non-consensus CDK1 sites and full in vitro ubiquitylation activity. Our results support a model in which cyclin B1's pocket facilitates sequential substrate phosphorylations involving initial priming events that assist subsequent pocket-dependent phosphorylations even at non-consensus CDK1 motifs.
Collapse
Affiliation(s)
- Christian Heinzle
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Anna Höfler
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Peter Heid
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Nora Kremer
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Rebecca Schunk
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Tanja Bange
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Thomas U Mayer
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Xiao J, Turner JJ, Kõivomägi M, Skotheim JM. Whi5 hypo- and hyper-phosphorylation dynamics control cell-cycle entry and progression. Curr Biol 2024; 34:2434-2447.e5. [PMID: 38749424 PMCID: PMC11247822 DOI: 10.1016/j.cub.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/18/2024] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
Progression through the cell cycle depends on the phosphorylation of key substrates by cyclin-dependent kinases. In budding yeast, these substrates include the transcriptional inhibitor Whi5 that regulates G1/S transition. In early G1 phase, Whi5 is hypo-phosphorylated and inhibits the Swi4/Swi6 (SBF) complex that promotes transcription of the cyclins CLN1 and CLN2. In late G1, Whi5 is rapidly hyper-phosphorylated by Cln1 and Cln2 in complex with the cyclin-dependent kinase Cdk1. This hyper-phosphorylation inactivates Whi5 and excludes it from the nucleus. Here, we set out to determine the molecular mechanisms responsible for Whi5's multi-site phosphorylation and how they regulate the cell cycle. To do this, we first identified the 19 Whi5 sites that are appreciably phosphorylated and then determined which of these sites are responsible for G1 hypo-phosphorylation. Mutation of 7 sites removed G1 hypo-phosphorylation, increased cell size, and delayed the G1/S transition. Moreover, the rapidity of Whi5 hyper-phosphorylation in late G1 depends on "priming" sites that dock the Cks1 subunit of Cln1,2-Cdk1 complexes. Hyper-phosphorylation is crucial for Whi5 nuclear export, normal cell size, full expression of SBF target genes, and timely progression through both the G1/S transition and S/G2/M phases. Thus, our work shows how Whi5 phosphorylation regulates the G1/S transition and how it is required for timely progression through S/G2/M phases and not only G1 as previously thought.
Collapse
Affiliation(s)
- Jordan Xiao
- Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA
| | - Jonathan J Turner
- Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA
| | - Mardo Kõivomägi
- Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA; Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD 20892, USA.
| | - Jan M Skotheim
- Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA; Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Brambila A, Prichard BE, DeWitt JT, Kellogg DR. Evidence for novel mechanisms that control cell-cycle entry and cell size. Mol Biol Cell 2024; 35:ar46. [PMID: 38231863 PMCID: PMC11064657 DOI: 10.1091/mbc.e23-05-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Entry into the cell cycle in late G1 phase occurs only when sufficient growth has occurred. In budding yeast, a cyclin called Cln3 is thought to link cell-cycle entry to cell growth. Cln3 accumulates during growth in early G1 phase and eventually helps trigger expression of late G1 phase cyclins that drive cell-cycle entry. All current models for cell-cycle entry assume that expression of late G1 phase cyclins is initiated at the transcriptional level. Current models also assume that the sole function of Cln3 in cell-cycle entry is to promote transcription of late G1 phase cyclins, and that Cln3 works solely in G1 phase. Here, we show that cell cycle-dependent expression of the late G1 phase cyclin Cln2 does not require any functions of the CLN2 promoter. Moreover, Cln3 can influence accumulation of Cln2 protein via posttranscriptional mechanisms. Finally, we show that Cln3 has functions in mitosis that strongly influence cell size. Together, these discoveries reveal the existence of surprising new mechanisms that challenge current models for control of cell-cycle entry and cell size.
Collapse
Affiliation(s)
- Amanda Brambila
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Beth E. Prichard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Jerry T. DeWitt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
6
|
Xiao J, Turner JJ, Kõivomägi M, Skotheim JM. Whi5 hypo- and hyper-phosphorylation dynamics control cell cycle entry and progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565392. [PMID: 37961465 PMCID: PMC10635099 DOI: 10.1101/2023.11.02.565392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Progression through the cell cycle depends on the phosphorylation of key substrates by cyclin-dependent kinases. In budding yeast, these substrates include the transcriptional inhibitor Whi5 that regulates the G1/S transition. In early G1 phase, Whi5 is hypo-phosphorylated and inhibits the SBF complex that promotes transcription of the cyclins CLN1 and CLN2 . In late-G1, Whi5 is rapidly hyper-phosphorylated by Cln1,2 in complex with the cyclin-dependent kinase Cdk1. This hyper-phosphorylation inactivates Whi5 and excludes it from the nucleus. Here, we set out to determine the molecular mechanisms responsible for Whi5's multi-site phosphorylation and how they regulate the cell cycle. To do this, we first identified the 19 Whi5 sites that are appreciably phosphorylated and then determined which of these sites are responsible for G1 hypo-phosphorylation. Mutation of 7 sites removed G1 hypo-phosphorylation, increased cell size, and delayed the G1/S transition. Moreover, the rapidity of Whi5 hyper-phosphorylation in late G1 depends on 'priming' sites that dock the Cks1 subunit of Cln1,2-Cdk1 complexes. Hyper-phosphorylation is crucial for Whi5 nuclear export, normal cell size, full expression of SBF target genes, and timely progression through both the G1/S transition and S/G2/M phases. Thus, our work shows how Whi5 phosphorylation regulates the G1/S transition and how it is required for timely progression through S/G2/M phases and not only G1 as previously thought.
Collapse
|
7
|
DeWitt JT, Chinwuba JC, Kellogg DR. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast. Genetics 2023; 225:iyad144. [PMID: 37531631 PMCID: PMC10758756 DOI: 10.1093/genetics/iyad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
Severe defects in cell size are a nearly universal feature of cancer cells. However, the underlying causes are unknown. A previous study suggested that a hyperactive mutant of yeast Ras (ras2G19V) that is analogous to the human Ras oncogene causes cell size defects, which could provide clues to how oncogenes influence cell size. However, the mechanisms by which ras2G19V influences cell size are unknown. Here, we found that ras2G19V inhibits a critical step in cell cycle entry, in which an early G1 phase cyclin induces transcription of late G1 phase cyclins. Thus, ras2G19V drives overexpression of the early G1 phase cyclin Cln3, yet Cln3 fails to induce normal transcription of late G1 phase cyclins, leading to delayed cell cycle entry and increased cell size. ras2G19V influences transcription of late G1 phase cyclins via a poorly understood step in which Cln3 inactivates the Whi5 transcriptional repressor. Previous studies found that yeast Ras relays signals via protein kinase A (PKA); however, ras2G19V appears to influence late G1 phase cyclin expression via novel PKA-independent signaling mechanisms. Together, the data define new mechanisms by which hyperactive Ras influences cell cycle entry and cell size in yeast. Hyperactive Ras also influences expression of G1 phase cyclins in mammalian cells, but the mechanisms remain unclear. Further analysis of Ras signaling in yeast could lead to discovery of new mechanisms by which Ras family members control expression of G1 phase cyclins.
Collapse
Affiliation(s)
- Jerry T DeWitt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jennifer C Chinwuba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Douglas R Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
9
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
The histone H2B Arg95 residue links the pheromone response pathway to rapamycin-induced G 1 arrest in yeast. Sci Rep 2022; 12:10023. [PMID: 35705668 PMCID: PMC9200821 DOI: 10.1038/s41598-022-14053-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Rapamycin is an immunosuppressant used for treating many types of diseases such as kidney carcinomas. In yeast, rapamycin inhibits the TORC1 kinase signaling pathway causing rapid alteration in gene expression and ultimately cell cycle arrest in G1 through mechanisms that are not fully understood. Herein, we screened a histone mutant collection and report that one of the mutants, H2B R95A, is strikingly resistant to rapamycin due to a defective cell cycle arrest. We show that the H2B R95A causes defects in the expression of a subset of genes of the pheromone pathway required for α factor-induced G1 arrest. The expression of the STE5 gene and its encoded scaffold protein Ste5, required for the sequential activation of the MAPKs of the pheromone pathway, is greatly reduced in the H2B R95A mutant. Similar to the H2B R95A mutant, cells devoid of Ste5 are also resistant to rapamycin. Rapamycin-induced G1 arrest does not involve detectable phosphorylation of the MAPKs, Kss1, and Fus3, as reported for α factor-induced G1 arrest. However, we observed a sharp induction of the G1 cyclin Cln2 (~ 3- to 4-fold) in the ste5Δ mutant within 30 min of exposure to rapamycin. Our data provide a new insight whereby rapamycin signaling via the Torc1 kinase may exploit the pheromone pathway to arrest cells in the G1 phase.
Collapse
|
11
|
Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano‐Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey N, Pancsa R, Chemes L, Gibson T. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 2022; 50:D497-D508. [PMID: 34718738 PMCID: PMC8728146 DOI: 10.1093/nar/gkab975] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano‐Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mihkel Örd
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Melanie Käser
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Ramya Kraleti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
12
|
Docking to a Basic Helix Promotes Specific Phosphorylation by G1-Cdk1. Int J Mol Sci 2021; 22:ijms22179514. [PMID: 34502421 PMCID: PMC8431026 DOI: 10.3390/ijms22179514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclins are the activators of cyclin-dependent kinase (CDK) complex, but they also act as docking scaffolds for different short linear motifs (SLiMs) in CDK substrates and inhibitors. According to the unified model of CDK function, the cell cycle is coordinated by CDK both via general CDK activity thresholds and cyclin-specific substrate docking. Recently, it was found that the G1-cyclins of S. cerevisiae have a specific function in promoting polarization and growth of the buds, making the G1 cyclins essential for cell survival. Thus, while a uniform CDK specificity of a single cyclin can be sufficient to drive the cell cycle in some cells, such as in fission yeast, cyclin specificity can be essential in other organisms. However, the known G1-CDK specific LP docking motif, was not responsible for this essential function, indicating that G1-CDKs use yet other unknown docking mechanisms. Here we report a discovery of a G1 cyclin-specific (Cln1,2) lysine-arginine-rich helical docking motif (the K/R motif) in G1-CDK targets involved in the mating pathway (Ste7), transcription (Xbp1), bud morphogenesis (Bud2) and spindle pole body (Spc29, Spc42, Spc110, Sli15) function of S. cerevisiae. We also show that the docking efficiency of K/R motif can be regulated by basophilic kinases such as protein kinase A. Our results further widen the list of cyclin specificity mechanisms and may explain the recently demonstrated unique essential function of G1 cyclins in budding yeast.
Collapse
|
13
|
Proline-Rich Motifs Control G2-CDK Target Phosphorylation and Priming an Anchoring Protein for Polo Kinase Localization. Cell Rep 2021; 31:107757. [PMID: 32553169 PMCID: PMC7301157 DOI: 10.1016/j.celrep.2020.107757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/31/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
The hydrophobic patch (hp), a docking pocket on cyclins of CDKs (cyclin-dependent kinases), has been thought to accommodate a single short linear motif (SLiM), the "RxL or Cy" docking motif. Here we show that hp can bind different motifs with high specificity. We identify a PxxPxF motif that is necessary for G2-cyclin Clb3 function in S. cerevisiae, and that mediates Clb3-Cdk1 phosphorylation of Ypr174c (proposed name: Cdc5 SPB anchor-Csa1) to regulate the localization of Polo kinase Cdc5. Similar motifs exist in other Clb3-Cdk1 targets. Our work completes the set of docking specificities for the four major cyclins: LP, RxL, PxxPxF, and LxF motifs for G1-, S-, G2-, and M-phase cyclins, respectively. Further, we show that variations in motifs can change their specificity for human cyclins. This diversity could provide complexity for the encoding of CDK thresholds to achieve ordered cell-cycle phosphorylation.
Collapse
|
14
|
Pirincci Ercan D, Chrétien F, Chakravarty P, Flynn HR, Snijders AP, Uhlmann F. Budding yeast relies on G 1 cyclin specificity to couple cell cycle progression with morphogenetic development. SCIENCE ADVANCES 2021; 7:eabg0007. [PMID: 34088668 PMCID: PMC8177710 DOI: 10.1126/sciadv.abg0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.
Collapse
Affiliation(s)
| | - Florine Chrétien
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
Kelso S, Orlicky S, Beenstock J, Ceccarelli DF, Kurinov I, Gish G, Sicheri F. Bipartite binding of the N terminus of Skp2 to cyclin A. Structure 2021; 29:975-988.e5. [PMID: 33989513 DOI: 10.1016/j.str.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.
Collapse
Affiliation(s)
- Susan Kelso
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL 60439, USA
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
16
|
Salamina M, Montefiore BC, Liu M, Wood DJ, Heath R, Ault JR, Wang LZ, Korolchuk S, Baslé A, Pastok MW, Reeks J, Tatum NJ, Sobott F, Arold ST, Pagano M, Noble ME, Endicott JA. Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. J Mol Biol 2021; 433:166795. [PMID: 33422522 PMCID: PMC7895821 DOI: 10.1016/j.jmb.2020.166795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022]
Abstract
The SCFSKP2 ubiquitin ligase relieves G1 checkpoint control of CDK-cyclin complexes by promoting p27KIP1 degradation. We describe reconstitution of stable complexes containing SKP1-SKP2 and CDK1-cyclin B or CDK2-cyclin A/E, mediated by the CDK regulatory subunit CKS1. We further show that a direct interaction between a SKP2 N-terminal motif and cyclin A can stabilize SKP1-SKP2-CDK2-cyclin A complexes in the absence of CKS1. We identify the SKP2 binding site on cyclin A and demonstrate the site is not present in cyclin B or cyclin E. This site is distinct from but overlapping with features that mediate binding of p27KIP1 and other G1 cyclin regulators to cyclin A. We propose that the capacity of SKP2 to engage with CDK2-cyclin A by more than one structural mechanism provides a way to fine tune the degradation of p27KIP1 and distinguishes cyclin A from other G1 cyclins to ensure orderly cell cycle progression.
Collapse
Affiliation(s)
- Marco Salamina
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Bailey C. Montefiore
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mengxi Liu
- Department of Biochemistry and Molecular Pharmacology, Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, and Howard Hughes Medical Institute, The Alexandria Center of Life Science, East Tower, 450 E, 29th Street, New York, NY 10016, USA
| | - Daniel J. Wood
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Heath
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James R. Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lan-Zhen Wang
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Svitlana Korolchuk
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martyna W. Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Judith Reeks
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalie J. Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, and Howard Hughes Medical Institute, The Alexandria Center of Life Science, East Tower, 450 E, 29th Street, New York, NY 10016, USA
| | - Martin E.M. Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A. Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Faustova I, Bulatovic L, Matiyevskaya F, Valk E, Örd M, Loog M. A new linear cyclin docking motif that mediates exclusively S-phase CDK-specific signaling. EMBO J 2020; 40:e105839. [PMID: 33210757 PMCID: PMC7809796 DOI: 10.15252/embj.2020105839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023] Open
Abstract
Cyclin‐dependent kinases (CDKs), the master regulators of cell division, are activated by different cyclins at different cell cycle stages. In addition to being activators of CDKs, cyclins recognize various linear motifs to target CDK activity to specific proteins. We uncovered a cyclin docking motif, NLxxxL, that contributes to phosphorylation‐dependent degradation of the CDK inhibitor Far1 at the G1/S stage in the yeast Saccharomyces cerevisiae. This motif is recognized exclusively by S‐phase CDK (S‐CDK) Clb5/6‐Cdc28 and is considerably more potent than the conventional RxL docking motif. The NLxxxL and RxL motifs were found to overlap in some target proteins, suggesting that cyclin docking motifs can evolve to switch from one to another for fine‐tuning of cell cycle events. Using time‐lapse fluorescence microscopy, we show how different docking connections temporally control phosphorylation‐driven target degradation. This also revealed a differential function of the phosphoadaptor protein Cks1, as Cks1 docking potentiated degron phosphorylation of RxL‐containing but not of NLxxxL‐containing substrates. The NLxxxL motif was found to govern S‐cyclin‐specificity in multiple yeast CDK targets including Fin1, Lif1, and Slx4, suggesting its wider importance.
Collapse
Affiliation(s)
- Ilona Faustova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Luka Bulatovic
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
18
|
Bandyopadhyay S, Bhaduri S, Örd M, Davey NE, Loog M, Pryciak PM. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In Vivo. Curr Biol 2020; 30:4454-4466.e5. [PMID: 32976810 PMCID: PMC8009629 DOI: 10.1016/j.cub.2020.08.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022]
Abstract
Many protein-modifying enzymes recognize their substrates via docking motifs, but the range of functionally permissible motif sequences is often poorly defined. During eukaryotic cell division, cyclin-specific docking motifs help cyclin-dependent kinases (CDKs) phosphorylate different substrates at different stages, thus enforcing a temporally ordered series of events. In budding yeast, CDK substrates with Leu/Pro-rich (LP) docking motifs are recognized by Cln1/2 cyclins in late G1 phase, yet the key sequence features of these motifs were unknown. Here, we comprehensively analyze LP motif requirements in vivo by combining a competitive growth assay with deep mutational scanning. We quantified the effect of all single-residue replacements in five different LP motifs by using six distinct G1 cyclins from diverse fungi including medical and agricultural pathogens. The results uncover substantial tolerance for deviations from the consensus sequence, plus requirements at some positions that are contingent on the favorability of other motif residues. They also reveal the basis for variations in functional potency among wild-type motifs, and allow derivation of a quantitative matrix that predicts the strength of other candidate motif sequences. Finally, we find that variation in docking motif potency can advance or delay the time at which CDK substrate phosphorylation occurs, and thereby control the temporal ordering of cell cycle regulation. The overall results provide a general method for surveying viable docking motif sequences and quantifying their potency in vivo, and they reveal how variations in docking strength can tune the degree and timing of regulatory modifications.
Collapse
Affiliation(s)
- Sushobhana Bandyopadhyay
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Samyabrata Bhaduri
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Roy J, Cyert MS. Cell Biology: Deciphering the ABCs of SLiMs in G1-CDK Signaling. Curr Biol 2020; 30:R1382-R1385. [PMID: 33202241 PMCID: PMC10763628 DOI: 10.1016/j.cub.2020.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new study uses an elegant in vivo assay to comprehensively characterize the LP docking motif, which determines G1-CDK substrate specificity in fungi. The authors show that LP-cyclin docking strength determines the timing of Sic1 degradation, a key cell cycle event.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Abstract
The quantitative model of cyclin-dependent kinase (CDK) function states that cyclins temporally order cell cycle events at different CDK activity levels, or thresholds. The model lacks a mechanistic explanation, as it is not understood how different thresholds are encoded into substrates. We show that a multisite phosphorylation code governs the phosphorylation of CDK targets and that phosphorylation clusters act as timing tags that trigger specific events at different CDK thresholds. Using phospho-degradable CDK threshold sensors with rationally encoded phosphorylation patterns, we were able to predictably program thresholds over the entire range of the Saccharomyces cerevisiae cell cycle. We defined three levels of CDK multisite phosphorylation encoding: (i) Ser-Thr swapping in phosphorylation sites, (ii) patterning of phosphorylation sites, and (iii) cyclin-specific docking combined with modulation of CDK activity. Thus, CDK can signal via hundreds of differentially encoded targets at precise times to provide a temporally ordered phosphorylation pattern required for cell division.
Collapse
|
21
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
22
|
Winters MJ, Pryciak PM. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Mol Biol Cell 2019; 30:1037-1049. [PMID: 30726174 PMCID: PMC6589907 DOI: 10.1091/mbc.e18-12-0793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) mediate numerous eukaryotic signaling responses. They also can modulate their own signaling output via positive or negative feedback loops. In the yeast pheromone response pathway, the MAPK Fus3 triggers negative feedback that dampens its own activity. One target of this feedback is Ste5, a scaffold protein that promotes Fus3 activation. Binding of Fus3 to a docking motif (D motif) in Ste5 causes signal dampening, which was proposed to involve a central cluster of phosphorylation sites in Ste5. Here, we reanalyzed the role of these central sites. Contrary to prior claims, phosphorylation-mimicking mutations at these sites did not impair signaling. Also, the hyperactive signaling previously observed when these sites were mutated to nonphosphorylatable residues arose from their replacement with valine residues and was not observed with other substitutes. Instead, a cluster of N-terminal sites in Ste5, not the central sites, is required for the rapid dampening of initial responses. Further results suggest that the role of the Fus3 D motif is most simply explained by a tethering effect that promotes Ste5 phosphorylation, rather than an allosteric effect proposed to regulate Fus3 activity. These findings substantially revise our understanding of how MAPK feedback attenuates scaffold-mediated signaling in this model pathway.
Collapse
Affiliation(s)
- Matthew J Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
23
|
Petrides A, Vinnicombe G. Enzyme sequestration by the substrate: An analysis in the deterministic and stochastic domains. PLoS Comput Biol 2018; 14:e1006107. [PMID: 29771922 PMCID: PMC5976211 DOI: 10.1371/journal.pcbi.1006107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 05/30/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
This paper is concerned with the potential multistability of protein concentrations in the cell. That is, situations where one, or a family of, proteins may sit at one of two or more different steady state concentrations in otherwise identical cells, and in spite of them being in the same environment. For models of multisite protein phosphorylation for example, in the presence of excess substrate, it has been shown that the achievable number of stable steady states can increase linearly with the number of phosphosites available. In this paper, we analyse the consequences of adding enzyme docking to these and similar models, with the resultant sequestration of phosphatase and kinase by the fully unphosphorylated and by the fully phosphorylated substrates respectively. In the large molecule numbers limit, where deterministic analysis is applicable, we prove that there are always values for these rates of sequestration which, when exceeded, limit the extent of multistability. For the models considered here, these numbers are much smaller than the affinity of the enzymes to the substrate when it is in a modifiable state. As substrate enzyme-sequestration is increased, we further prove that the number of steady states will inevitably be reduced to one. For smaller molecule numbers a stochastic analysis is more appropriate, where multistability in the large molecule numbers limit can manifest itself as multimodality of the probability distribution; the system spending periods of time in the vicinity of one mode before jumping to another. Here, we find that substrate enzyme sequestration can induce bimodality even in systems where only a single steady state can exist at large numbers. To facilitate this analysis, we develop a weakly chained diagonally dominant M-matrix formulation of the Chemical Master Equation, allowing greater insights in the way particular mechanisms, like enzyme sequestration, can shape probability distributions and therefore exhibit different behaviour across different regimes.
Collapse
Affiliation(s)
- Andreas Petrides
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Glenn Vinnicombe
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Touati SA, Kataria M, Jones AW, Snijders AP, Uhlmann F. Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 2018; 37:embj.201798745. [PMID: 29650682 PMCID: PMC5978319 DOI: 10.15252/embj.201798745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
25
|
Miller CJ, Turk BE. Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trends Biochem Sci 2018; 43:380-394. [PMID: 29544874 DOI: 10.1016/j.tibs.2018.02.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation is the most common reversible post-translational modification in eukaryotes. Humans have over 500 protein kinases, of which more than a dozen are established targets for anticancer drugs. All kinases share a structurally similar catalytic domain, yet each one is uniquely positioned within signaling networks controlling essentially all aspects of cell behavior. Kinases are distinguished from one another based on their modes of regulation and their substrate repertoires. Coupling specific inputs to the proper signaling outputs requires that kinases phosphorylate a limited number of sites to the exclusion of hundreds of thousands of off-target phosphorylation sites. Here, we review recent progress in understanding mechanisms of kinase substrate specificity and how they function to shape cellular signaling networks.
Collapse
Affiliation(s)
- Chad J Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Feng S, Sáez M, Wiuf C, Feliu E, Soyer OS. Core signalling motif displaying multistability through multi-state enzymes. J R Soc Interface 2017; 13:rsif.2016.0524. [PMID: 27733693 PMCID: PMC5095215 DOI: 10.1098/rsif.2016.0524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology. Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number of steady states in the system. These findings reveal, to our knowledge, a new mechanism for the generation of bistability and multistability in cellular signalling systems. Further the futile cycle featuring a two-state kinase is among the smallest bistable signalling motifs. We show that multi-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural evolution and could equally be used by synthetic approaches for the generation of multistable information processing systems at the cellular level.
Collapse
Affiliation(s)
- Song Feng
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Meritxell Sáez
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Elisenda Feliu
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
27
|
Pedraza N, Cemeli T, Monserrat MV, Garí E, Ferrezuelo F. Regulation of small GTPase activity by G1 cyclins. Small GTPases 2017; 10:47-53. [PMID: 28129038 DOI: 10.1080/21541248.2016.1268665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.
Collapse
Affiliation(s)
- Neus Pedraza
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Tània Cemeli
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Ma Ventura Monserrat
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Eloi Garí
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| | - Francisco Ferrezuelo
- a Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida) , and Departament de Ciències Mèdiques Bàsiques , Facultat de Medicina, Universitat de Lleida , Lleida , Catalonia , Spain
| |
Collapse
|
28
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
29
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|