1
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
2
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
3
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
4
|
Zhang X, Hooykaas MJG, van Heusden GP, Hooykaas PJJ. The translocated virulence protein VirD5 causes DNA damage and mutation during Agrobacterium-mediated transformation of yeast. SCIENCE ADVANCES 2022; 8:eadd3912. [PMID: 36383666 PMCID: PMC9668295 DOI: 10.1126/sciadv.add3912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The soil bacterium Agrobacterium tumefaciens is a preferred gene vector not only for plants but also for fungi. Agrobacterium delivers a small set of virulence proteins into host cells concomitantly with transferred DNA (T-DNA) to support the transformation process. Here, we find that expression of one of these proteins, called VirD5, in yeast host cells causes replication stress and DNA damage. This can result in both genomic rearrangements and local mutations, especially small deletions. Delivery of VirD5 during cocultivation with Agrobacterium led to mutations in the yeast genome that were unlinked to the integration of T-DNA. This load of mutations can be prevented by using a virD5 mutant for genome engineering, but this leads to a lower transformation frequency.
Collapse
|
5
|
Wilkinson EM, Spenkelink LM, van Oijen AM. Observing protein dynamics during DNA-lesion bypass by the replisome. Front Mol Biosci 2022; 9:968424. [PMID: 36213113 PMCID: PMC9534484 DOI: 10.3389/fmolb.2022.968424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome–lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics.
Collapse
Affiliation(s)
- Elise M. Wilkinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| |
Collapse
|
6
|
Grabarczyk DB. The Fork Protection Complex: A Regulatory Hub at the Head of the Replisome. Subcell Biochem 2022; 99:83-107. [PMID: 36151374 DOI: 10.1007/978-3-031-00793-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As well as accurately duplicating DNA, the eukaryotic replisome performs a variety of other crucial tasks to maintain genomic stability. For example, organizational elements, like cohesin, must be transferred from the front of the fork to the new strands, and when there is replication stress, forks need to be protected and checkpoint signalling activated. The Tof1-Csm3 (or Timeless-Tipin in humans) Fork Protection Complex (FPC) ensures efficient replisome progression and is required for a range of replication-associated activities. Recent studies have begun to reveal the structure of this complex, and how it functions within the replisome to perform its diverse roles. The core of the FPC acts as a DNA grip on the front of the replisome to regulate fork progression. Other flexibly linked domains and motifs mediate interactions with proteins and specific DNA structures, enabling the FPC to act as a hub at the head of the replication fork.
Collapse
Affiliation(s)
- Daniel B Grabarczyk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, Würzburg, Germany.
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
7
|
Ivanova A, Atemin A, Uzunova S, Danovski G, Aleksandrov R, Stoynov S, Nedelcheva-Veleva M. The Effect of Dia2 Protein Deficiency on the Cell Cycle, Cell Size, and Recruitment of Ctf4 Protein in Saccharomyces cerevisiae. Molecules 2021; 27:97. [PMID: 35011329 PMCID: PMC8746418 DOI: 10.3390/molecules27010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/13/2023] Open
Abstract
Cells have evolved elaborate mechanisms to regulate DNA replication machinery and cell cycles in response to DNA damage and replication stress in order to prevent genomic instability and cancer. The E3 ubiquitin ligase SCFDia2 in S. cerevisiae is involved in the DNA replication and DNA damage stress response, but its effect on cell growth is still unclear. Here, we demonstrate that the absence of Dia2 prolongs the cell cycle by extending both S- and G2/M-phases while, at the same time, activating the S-phase checkpoint. In these conditions, Ctf4-an essential DNA replication protein and substrate of Dia2-prolongs its binding to the chromatin during the extended S- and G2/M-phases. Notably, the prolonged cell cycle when Dia2 is absent is accompanied by a marked increase in cell size. We found that while both DNA replication inhibition and an absence of Dia2 exerts effects on cell cycle duration and cell size, Dia2 deficiency leads to a much more profound increase in cell size and a substantially lesser effect on cell cycle duration compared to DNA replication inhibition. Our results suggest that the increased cell size in dia2∆ involves a complex mechanism in which the prolonged cell cycle is one of the driving forces.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; (A.I.); (A.A.); (S.U.); (G.D.); (R.A.)
| | - Marina Nedelcheva-Veleva
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; (A.I.); (A.A.); (S.U.); (G.D.); (R.A.)
| |
Collapse
|
8
|
Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020; 48:2769-2778. [PMID: 33300972 PMCID: PMC7752080 DOI: 10.1042/bst20200640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.
Collapse
|
9
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
10
|
Zhang W, Feng J, Li Q. The replisome guides nucleosome assembly during DNA replication. Cell Biosci 2020; 10:37. [PMID: 32190287 PMCID: PMC7066812 DOI: 10.1186/s13578-020-00398-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleosome assembly during DNA replication is tightly coupled to ongoing DNA synthesis. This process, termed DNA replication-coupled (RC) nucleosome assembly, is essential for chromatin replication and has a great impact on both genome stability maintenance and epigenetic inheritance. This review discusses a set of recent findings regarding the role of replisome components contributing to RC nucleosome assembly. Starting with a brief introduction to the factors involved in nucleosome assembly and some aspects of the architecture of the eukaryotic replisome, we discuss studies from yeast to mammalian cells and the interactions of replisome components with histones and histone chaperones. We describe the proposed functions of replisome components during RC nucleosome assembly and discuss their impacts on histone segregation and implications for epigenetic inheritance.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
11
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
12
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Jain R, Aggarwal AK, Rechkoblit O. Eukaryotic DNA polymerases. Curr Opin Struct Biol 2018; 53:77-87. [PMID: 30005324 DOI: 10.1016/j.sbi.2018.06.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023]
Abstract
The eukaryotic DNA replication machinery is conserved from yeast to humans and requires the actions of multiple DNA polymerases. In addition to replicative DNA polymerases for duplication of the leading and lagging DNA strands, another group of specialized polymerases is required for DNA repair and/or translesion DNA synthesis (TLS). We emphasize here recent findings that accelerate our understanding of the structure and mechanisms of these remarkable enzymes. We also highlight growing evidence on the role of DNA polymerases in the origin of certain cancers, and paradoxically as emerging targets for cancer therapy.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA.
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
14
|
Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S, Diaz F, Rotundo RL, Carvalho RF, Moraes CT. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 2018; 17:e12707. [PMID: 29427317 PMCID: PMC5847875 DOI: 10.1111/acel.12707] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/31/2022] Open
Abstract
PGC-1α is a transcriptional co-activator known as the master regulator of mitochondrial biogenesis. Its control of metabolism has been suggested to exert critical influence in the aging process. We have aged mice overexpressing PGC-1α in skeletal muscle to determine whether the transcriptional changes reflected a pattern of expression observed in younger muscle. Analyses of muscle proteins showed that Pax7 and several autophagy markers were increased. In general, the steady-state levels of several muscle proteins resembled that of muscle from young mice. Age-related mtDNA deletion levels were not increased by the PGC-1α-associated increase in mitochondrial biogenesis. Accordingly, age-related changes in the neuromuscular junction were minimized by PGC-1α overexpression. RNA-Seq showed that several genes overexpressed in the aged PGC-1α transgenic are expressed at higher levels in young when compared to aged skeletal muscle. As expected, there was increased expression of genes associated with energy metabolism but also of pathways associated with muscle integrity and regeneration. We also found that PGC-1α overexpression had a mild but significant effect on longevity. Taken together, overexpression of PGC-1α in aged muscle led to molecular changes that resemble the patterns observed in skeletal muscle from younger mice.
Collapse
Affiliation(s)
- Sofia Garcia
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Nadee Nissanka
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Edson A. Mareco
- Graduate Program in Environment and Regional DevelopmentUniversity of Western São PauloPresidente PrudenteBrazil
| | - Susana Rossi
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Susana Peralta
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Francisca Diaz
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Richard L. Rotundo
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robson F. Carvalho
- Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrazil
| | - Carlos T. Moraes
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
- Neuroscience Graduate ProgramUniversity of Miami Miller School of MedicineMiamiFLUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
15
|
Kilkenny ML, Simon AC, Mainwaring J, Wirthensohn D, Holzer S, Pellegrini L. The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box. Open Biol 2017; 7:170217. [PMID: 29167311 PMCID: PMC5717350 DOI: 10.1098/rsob.170217] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
A dynamic multi-protein assembly known as the replisome is responsible for DNA synthesis in eukaryotic cells. In yeast, the hub protein Ctf4 bridges DNA helicase and DNA polymerase and recruits factors with roles in metabolic processes coupled to DNA replication. An important question in DNA replication is the extent to which the molecular architecture of the replisome is conserved between yeast and higher eukaryotes. Here, we describe the biochemical basis for the interaction of the human CTF4-orthologue AND-1 with DNA polymerase α (Pol α)/primase, the replicative polymerase that initiates DNA synthesis. AND-1 has maintained the trimeric structure of yeast Ctf4, driven by its conserved SepB domain. However, the primary interaction of AND-1 with Pol α/primase is mediated by its C-terminal HMG box, unique to mammalian AND-1, which binds the B subunit, at the same site targeted by the SV40 T-antigen for viral replication. In addition, we report a novel DNA-binding activity in AND-1, which might promote the correct positioning of Pol α/primase on the lagging-strand template at the replication fork. Our findings provide a biochemical basis for the specific interaction between two critical components of the human replisome, and indicate that important principles of replisome architecture have changed significantly in evolution.
Collapse
Affiliation(s)
- Mairi L Kilkenny
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Aline C Simon
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jack Mainwaring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - David Wirthensohn
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Sandro Holzer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
16
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
17
|
Sasaki M, Kobayashi T. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks. Mol Cell 2017; 66:533-545.e5. [PMID: 28525744 DOI: 10.1016/j.molcel.2017.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Arrested replication forks lead to DNA double-strand breaks (DSBs), which are a major source of genome rearrangements. Yet DSB repair in the context of broken forks remains poorly understood. Here we demonstrate that DSBs that are formed at arrested forks in the budding yeast ribosomal RNA gene (rDNA) locus are normally repaired by pathways dependent on the Mre11-Rad50-Xrs2 complex but independent of HR. HR is also dispensable for DSB repair at stalled forks at tRNA genes. In contrast, in cells lacking the core replisome component Ctf4, DSBs are formed more frequently, and these DSBs undergo end resection and HR-mediated repair that is prone to rDNA hyper-amplification; this highlights Ctf4 as a key regulator of DSB end resection at arrested forks. End resection also occurs during physiological rDNA amplification even in the presence of Ctf4. Suppression of end resection is thus important for protecting DSBs at arrested forks from chromosome rearrangements.
Collapse
MESH Headings
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA Replication
- DNA, Fungal/biosynthesis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Gene Rearrangement
- Microbial Viability
- Mutation
- Nucleic Acid Conformation
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Replication Origin
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
18
|
Cavelier P, Cau J, Morin N, Delsert C. Early gametogenesis in the Pacific oyster: new insights using stem cell and mitotic markers. ACTA ACUST UNITED AC 2017; 220:3988-3996. [PMID: 28860120 DOI: 10.1242/jeb.167734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023]
Abstract
While our knowledge of bivalve gametogenesis has progressed in recent times, more molecular markers are needed in order to develop tissue imaging. Here, we identified stem cell and mitotic markers to further characterize oyster early gametogenesis, mainly through immunofluorescence microscopy. Intense alkaline phosphatase activity, a non-specific marker for stem cells, was detected on the outer edge of the gonad ducts at the post-spawning stage, suggesting an abundance of undifferentiated cells very early during the sexual cycle. This observation was confirmed using an antibody against Sox2, a transcription factor specific for stem or germline cells, which labeled cells in the gonad duct inner mass and ciliated epithelium early during the initial oyster sexual cycle. Moreover, Vasa, a cytoplasmic marker for germline cells, was also detected in the gonad acini and duct cells, thus confirming that germline cells were abundant early on. In addition, the binding of the minichromosome maintenance MCM6 protein to chromatin indicated the gonad acini and duct cells were engaged in the cell cycle. DNA replication was indeed confirmed by an abundant in vivo incorporation of BrdU into the duct cell chromatin. Finally, proliferation of acini and duct cells was demonstrated by the chromatin-bound Ser10-phosphorylated histone H3, a mitotic marker. The markers for the cell cycle and mitosis used here thus indicate that acini and duct cells were already actively dividing early during the oyster sexual cycle. In addition, together with the stem cell markers, these data reveal that the epithelium delimiting the duct outer edge contains a dynamic population of undifferentiated cells.
Collapse
Affiliation(s)
- Patricia Cavelier
- Université de Montpellier, 34095 Montpellier, France.,IGMM CNRS UMR 5535, 34293 Montpellier, France
| | - Julien Cau
- Université de Montpellier, 34095 Montpellier, France.,IGH CNRS UPR 1142, 34396 Montpellier, France
| | - Nathalie Morin
- Université de Montpellier, 34095 Montpellier, France.,CRBM CNRS UMR5237, 34293 Montpellier, France
| | - Claude Delsert
- Université de Montpellier, 34095 Montpellier, France .,CRBM CNRS UMR5237, 34293 Montpellier, France.,3AS Ifremer, 34250 Palavas-les-Flots, France
| |
Collapse
|
19
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
20
|
The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory. J Mol Biol 2017; 429:2011-2029. [DOI: 10.1016/j.jmb.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
21
|
Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K. CUL-2 LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 2017; 19:468-479. [PMID: 28368371 PMCID: PMC5410169 DOI: 10.1038/ncb3500] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Replisome disassembly is the final step of DNA replication in eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of the CMG helicase (CDC45-MCM-GINS). Using Caenorhabditis elegans early embryos and Xenopus laevis egg extracts, we show that the E3 ligase CUL-2LRR-1 associates with the replisome and drives ubiquitylation and disassembly of CMG, together with the CDC-48 cofactors UFD-1 and NPL-4. Removal of CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our data identify chromatin recruitment of CUL2LRR1 as a key regulated step during DNA replication termination. Interestingly, however, CMG persists on chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed by a mitotic pathway that requires the CDC-48 cofactor UBXN-3, orthologous to the human tumour suppressor FAF1. Partial inactivation of lrr-1 and ubxn-3 leads to synthetic lethality, suggesting future approaches by which a deeper understanding of CMG disassembly in metazoa could be exploited therapeutically.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Priego Moreno
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
22
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
23
|
Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep 2017; 7:44447. [PMID: 28290550 PMCID: PMC5349531 DOI: 10.1038/srep44447] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Collapse
Affiliation(s)
- Payam Shahi
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samuel C Kim
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - John R Haliburton
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci U S A 2017; 114:E697-E706. [PMID: 28096349 DOI: 10.1073/pnas.1620500114] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5'-3' through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.
Collapse
|
25
|
Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression. Genes (Basel) 2017; 8:genes8010033. [PMID: 28098815 PMCID: PMC5295027 DOI: 10.3390/genes8010033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Replication–transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription–replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription–replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.
Collapse
|
26
|
Sun J, Yuan Z, Bai L, Li H. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication. Protein Sci 2017; 26:40-51. [PMID: 27589669 PMCID: PMC5192969 DOI: 10.1002/pro.3033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems.
Collapse
Affiliation(s)
- Jingchuan Sun
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Zuanning Yuan
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
- The Biochemistry and Structural Biology ProgramStony Brook UniversityStony BrookNew York11794
| | - Lin Bai
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Huilin Li
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| |
Collapse
|
27
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
29
|
Yao N, O’Donnell M. Bacterial and Eukaryotic Replisome Machines. JSM BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 3:1013. [PMID: 28042596 PMCID: PMC5199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular genomic DNA is replicated by a multiprotein replisome machine. The replisome contains numerous essential factors that unwind, prime and synthesize each of the two strands of duplex DNA. The antiparallel structure of DNA, and unidirectional activity of DNA polymerases, requires the two strands of DNA to be extended in opposite directions, and this structural feature requires distinctive processes for synthesis of the two strands. Genome duplication is of central importance to all cell types, and one may expect the replisome apparatus to be conserved from bacteria to human, as is the case with RNA polymerase driven transcription and ribosome mediated translation. However, it is known that the replication factors of bacteria are not homologous to those of archaea and eukaryotes, indicating that the replication process evolved twice, independently, rather than from a common ancestor cell. Thus, the different domains of life may exhibit significant differences in their mechanistic strategy of replication. In this review, we compare and contrast the different structures and mechanistic features of the cellular replication machinery in the three domains of life.
Collapse
Affiliation(s)
| | - Mike O’Donnell
- Corresponding author. Mike O’Donnell, Howard Hughes Medical Institute and DNA Replication Laboratory, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA,
| |
Collapse
|