1
|
Kaur D, Held MA, Smith MR, Showalter AM. Functional characterization of hydroxyproline-O-galactosyltransferases for Arabidopsis arabinogalactan-protein synthesis. BMC PLANT BIOLOGY 2021; 21:590. [PMID: 34903166 PMCID: PMC8667403 DOI: 10.1186/s12870-021-03362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with β-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to β-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.
Collapse
Affiliation(s)
- Dasmeet Kaur
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701-2979 USA
| | - Mountain R. Smith
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979 USA
| |
Collapse
|
2
|
Wang H, Qi X, Chen S, Feng J, Chen H, Qin Z, Deng Y. An integrated transcriptomic and proteomic approach to dynamically study the mechanism of pollen-pistil interactions during jasmine crossing. J Proteomics 2021; 249:104380. [PMID: 34517123 DOI: 10.1016/j.jprot.2021.104380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023]
Abstract
Jasmine (Jasminum sambac Aiton, Oleaceae) flowers are widely consumed in many countries for their tea-making, medicinal and ornamental properties. To improve the quality and yield of flowers, it is very important to carry out cross-breeding between different petal types of jasmine. However, because of the difficulty of sexual reproduction, there is no report on the success of jasmine crosses. In this paper, single- and double-petal jasmine plants were crossed artificially. The stigmas of single-petal plants post pollination, including those at 0 h after pollination (CK), 1 h after pollination (T1) and 6 h after pollination (T2), were sequenced by transcriptomic combined with proteomic analyses. A total of 178,098 gene products were assembled. Simultaneously, a total of 2337 protein species were identified. Some regulatory gene products and functional protein species were identified that may be involved in the process of pollen-pistil interactions. These findings suggest that the identified differentially expressed gene products and differentially accumulated protein species may play vital roles in jasmine plants in response to pollen-pistil interactions, providing important genetic resources for further functional dissection of the molecular mechanisms of these interactions. SIGNIFICANCE: These results have important scientific significance to take effective measures to overcome pre-fertilization barriers and to guide the cross breeding of jasmine. Further, they can also be used for reference in other plant breeding with the same fertilization barriers.
Collapse
Affiliation(s)
- Huadi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
| | - Yanming Deng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
3
|
Cascallares M, Setzes N, Marchetti F, López GA, Distéfano AM, Cainzos M, Zabaleta E, Pagnussat GC. A Complex Journey: Cell Wall Remodeling, Interactions, and Integrity During Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:599247. [PMID: 33329663 PMCID: PMC7733995 DOI: 10.3389/fpls.2020.599247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/05/2023]
Abstract
In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
4
|
Vaz Dias F, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth. THE NEW PHYTOLOGIST 2019; 222:1434-1446. [PMID: 30628082 DOI: 10.1111/nph.15674] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/28/2018] [Indexed: 05/29/2023]
Abstract
Diacylglycerol kinases (DGKs) play a major role in the production of phosphatidic acid (PtdOH) and were implicated in endomembrane trafficking and signalling cascades. In plants, the role of DGKs is less clear, as PtdOH seems to arise mostly from phospholipase D activity. Here, we investigated the function of the Arabidopsis gene encoding DGK4, which is highly expressed in pollen. In vitro, pollen tubes from homozygous dgk4 plants showed normal morphology, but reduced growth rate and altered stiffness and adhesion properties (revealed by atomic force microscopy). In vivo, dgk4 pollen was able to fertilize wild-type ovules, but self-pollination in dgk4 plants led to fewer seeds and shorter siliques. Phenotypic analysis revealed that the dgk4 mutation affects not only the male germ line but also the vegetative tissue. DGK4-green fluorescent protein fusion imaging revealed a cytosolic localization with a slightly higher signal in the subapical or apical region. dgk4 pollen tubes were found to exhibit perturbations in membrane recycling, and lipid analysis revealed a minor increase of PtdOH concomitant with decreased phosphatidylcholine, compared with wild-type. In vitro, DGK4 was found to exhibit kinase and guanylyl cyclase activity. Quantitative PCR data revealed downregulation of genes related to actin dynamics and phosphoinositide metabolism in mutant pollen, but upregulation of the DGK6 isoform. Altogether, these results are discussed considering a role of DGK4 in signalling cross-talk.
Collapse
Affiliation(s)
- Fernando Vaz Dias
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Susana Serrazina
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Miguel Vitorino
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Dario Marchese
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Ingo Heilmann
- Institute of Biochemistry and Biotechnology/Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Margarida Godinho
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Mário Rodrigues
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Rui Malhó
- Faculdade de Ciências de Lisboa, BioISI, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| |
Collapse
|
5
|
Ponvert N, Goldberg J, Leydon A, Johnson MA. Iterative subtraction facilitates automated, quantitative analysis of multiple pollen tube growth features. PLANT REPRODUCTION 2019; 32:45-54. [PMID: 30543045 DOI: 10.1007/s00497-018-00351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.
Collapse
Affiliation(s)
- Nathaniel Ponvert
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Alexander Leydon
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
Pereira AM, Lopes AL, Coimbra S. Arabinogalactan Proteins as Interactors along the Crosstalk between the Pollen Tube and the Female Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:1895. [PMID: 28018417 PMCID: PMC5159419 DOI: 10.3389/fpls.2016.01895] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) have long been considered to be implicated in several steps of the reproductive process of flowering plants. Pollen tube growth along the pistil tissues requires a multiplicity of signaling pathways to be activated and turned off precisely, at crucial timepoints, to guarantee successful fertilization and seed production. In the recent years, an outstanding effort has been made by the plant reproduction scientific community in order to better understand this process. This resulted in the discovery of a fairly substantial number of new players essential for reproduction, as well as their modes of action and interactions. Besides all the indications of AGPs involvement in reproduction, there were no convincing evidences about it. Recently, several studies came out to prove what had long been suggested about this complex family of glycoproteins. AGPs consist of a large family of hydroxyproline-rich proteins, predicted to be anchored to the plasma membrane and extremely rich in sugars. These two last characteristics always made them perfect candidates to be involved in signaling mechanisms, in several plant developmental processes. New findings finally relate AGPs to concrete functions in plant reproduction. In this review, it is intended not only to describe how different molecules and signaling pathways are functioning to achieve fertilization, but also to integrate the recent discoveries about AGPs along this process.
Collapse
Affiliation(s)
- Ana M. Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Ana L. Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| |
Collapse
|
7
|
Pereira AM, Lopes AL, Coimbra S. JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1209616. [PMID: 27413888 PMCID: PMC5022411 DOI: 10.1080/15592324.2016.1209616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A precise control of sperm cells delivery and fusion to the egg cell and the central cell is fundamental for the accomplishment of successful double fertilization in flowering plants. This is mostly regulated by female gametophyte egg and central cells, which control the timing of synergids cell degeneration. We recently identified an arabinogalactan protein, AGP4, named JAGGER, that impairs the persistent synergid degeneration, and consequently leads to the attraction of more than one pollen tube into one embryo sac, a situation termed polytubey. jagger mutants revealed an increased rate of polytubey and persistent synergids that do not degenerate. This persistent synergid, is, as we suggested, the cell responsible for attracting an extra pollen tube into the embryo sacs.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Porto, Portugal
| | - Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Porto, Portugal
- CONTACT Sílvia Coimbra
| |
Collapse
|