1
|
Hsu PC, Lu TC, Hung PH, Leu JY. Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts. Nucleic Acids Res 2024; 52:13914-13930. [PMID: 39565215 DOI: 10.1093/nar/gkae1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Transcriptional rewiring generates phenotypic novelty, acting as an important mechanism contributing to evolutionary development, speciation, and adaptation in all organisms. The phenotypic outcomes (functions) of transcription factor (TF) activity are determined by the combined effects of all target genes in the TF's regulatory network. Plastic rewiring of target genes accumulates during species divergence and ultimately alters phenotypes, indicating a TF functional switch. We define this phenomenon as 'disruptive rewiring', where the rewiring process disrupts the link between a TF and its original target genes that determine phenotypes. Here, we investigate if 'complete' disruptive rewiring is a prerequisite for a TF functional switch by employing chromatin immunoprecipitation sequencing, RNA expression, and phenotypic assays across yeast species. In yeasts where Sef1 targets TCA (tricarboxylic acid) cycle genes, we demonstrate that Sef1 orthologs can promote and inhibit respiratory growth by modulating the moonlighting function of their conserved target, NDE1. This modulation occurs without changing the overall association of Sef1 with TCA cycle genes. We propose that phenotypic masking by NDE1 promotes 'deceptive' disruptive rewiring of the Sef1 regulatory network in Saccharomyces cerevisiae, thereby potentially constraining future evolutionary trajectories.
Collapse
Affiliation(s)
- Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Po-Hsiang Hung
- Department of Genetics, Stanford University Medical School, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| |
Collapse
|
2
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Lombardi L, Salzberg LI, Cinnéide EÓ, O'Brien C, Morio F, Turner SA, Byrne KP, Butler G. Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis. Nat Commun 2024; 15:9190. [PMID: 39448588 PMCID: PMC11502921 DOI: 10.1038/s41467-024-53442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen commonly isolated from the environment and associated with nosocomial infection outbreaks worldwide. We describe here the construction of a large collection of gene disruptions, greatly increasing the molecular tools available for probing gene function in C. parapsilosis. We use these to identify transcription factors associated with multiple metabolic pathways, and in particular to dissect the network regulating the assimilation of sulphur. We find that, unlike in other yeasts and filamentous fungi, the transcription factor Met4 is not the main regulator of methionine synthesis. In C. parapsilosis, assimilation of inorganic sulphur (sulphate) and synthesis of cysteine and methionine is regulated by Met28, a paralog of Met4, whereas Met4 regulates expression of a wide array of transporters and enzymes involved in the assimilation of organosulfur compounds. Analysis of transcription factor binding sites suggests that Met4 is recruited by the DNA-binding protein Met32, and Met28 is recruited by Cbf1. Despite having different target genes, Met4 and Met28 have partial functional overlap, possibly because Met4 can contribute to assimilation of inorganic sulphur in the absence of Met28.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - Letal I Salzberg
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Caoimhe O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, UR1155, Nantes, France
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
4
|
Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in Candida albicans. mBio 2023; 14:e0180723. [PMID: 37791798 PMCID: PMC10653825 DOI: 10.1128/mbio.01807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.
Collapse
Affiliation(s)
- Manjari Shrivastava
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Daniel Ruiz
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Manon Henry
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Antony T. Vincent
- Department of Animal Sciences, Université Laval, Quebec City, Canada
| | - Adnane Sellam
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Shepherd MJ, Pierce AP, Taylor TB. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity. PLoS Biol 2023; 21:e3002348. [PMID: 37871011 PMCID: PMC10621929 DOI: 10.1371/journal.pbio.3002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
The survival of a population during environmental shifts depends on whether the rate of phenotypic adaptation keeps up with the rate of changing conditions. A common way to achieve this is via change to gene regulatory network (GRN) connections-known as rewiring-that facilitate novel interactions and innovation of transcription factors. To understand the success of rapidly adapting organisms, we therefore need to determine the rules that create and constrain opportunities for GRN rewiring. Here, using an experimental microbial model system with the soil bacterium Pseudomonas fluorescens, we reveal a hierarchy among transcription factors that are rewired to rescue lost function, with alternative rewiring pathways only unmasked after the preferred pathway is eliminated. We identify 3 key properties-high activation, high expression, and preexisting low-level affinity for novel target genes-that facilitate transcription factor innovation. Ease of acquiring these properties is constrained by preexisting GRN architecture, which was overcome in our experimental system by both targeted and global network alterations. This work reveals the key properties that determine transcription factor evolvability, and as such, the evolution of GRNs.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
6
|
Chatfield-Reed K, Marno Jones K, Shah F, Chua G. Genetic-interaction screens uncover novel biological roles and regulators of transcription factors in fission yeast. G3 GENES|GENOMES|GENETICS 2022; 12:6655692. [PMID: 35924983 PMCID: PMC9434175 DOI: 10.1093/g3journal/jkac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
In Schizosaccharomyces pombe, systematic analyses of single transcription factor deletion or overexpression strains have made substantial advances in determining the biological roles and target genes of transcription factors, yet these characteristics are still relatively unknown for over a quarter of them. Moreover, the comprehensive list of proteins that regulate transcription factors remains incomplete. To further characterize Schizosaccharomyces pombe transcription factors, we performed synthetic sick/lethality and synthetic dosage lethality screens by synthetic genetic array. Examination of 2,672 transcription factor double deletion strains revealed a sick/lethality interaction frequency of 1.72%. Phenotypic analysis of these sick/lethality strains revealed potential cell cycle roles for several poorly characterized transcription factors, including SPBC56F2.05, SPCC320.03, and SPAC3C7.04. In addition, we examined synthetic dosage lethality interactions between 14 transcription factors and a miniarray of 279 deletion strains, observing a synthetic dosage lethality frequency of 4.99%, which consisted of known and novel transcription factor regulators. The miniarray contained deletions of genes that encode primarily posttranslational-modifying enzymes to identify putative upstream regulators of the transcription factor query strains. We discovered that ubiquitin ligase Ubr1 and its E2/E3-interacting protein, Mub1, degrade the glucose-responsive transcriptional repressor Scr1. Loss of ubr1+ or mub1+ increased Scr1 protein expression, which resulted in enhanced repression of flocculation through Scr1. The synthetic dosage lethality screen also captured interactions between Scr1 and 2 of its known repressors, Sds23 and Amk2, each affecting flocculation through Scr1 by influencing its nuclear localization. Our study demonstrates that sick/lethality and synthetic dosage lethality screens can be effective in uncovering novel functions and regulators of Schizosaccharomyces pombe transcription factors.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Kurtis Marno Jones
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Farah Shah
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
7
|
Parvizi Omran R, Ramírez-Zavala B, Aji Tebung W, Yao S, Feng J, Law C, Dumeaux V, Morschhäuser J, Whiteway M. The zinc cluster transcription factor Rha1 is a positive filamentation regulator in Candida albicans. Genetics 2022; 220:iyab155. [PMID: 34849863 PMCID: PMC8733637 DOI: 10.1093/genetics/iyab155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023] Open
Abstract
Zinc cluster transcription factors (TFs) are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster TF regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under nonhyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing TFs Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.
Collapse
Affiliation(s)
- Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | - Walters Aji Tebung
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Shuangyan Yao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vanessa Dumeaux
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
8
|
An Intragenic Recombination Event Generates a Snf4-Independent Form of the Essential Protein Kinase Snf1 in Candida albicans. mSphere 2019; 4:4/3/e00352-19. [PMID: 31217306 PMCID: PMC6584375 DOI: 10.1128/msphere.00352-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase. The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1Δ311 − 316 was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1Δ311 − 316 still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. IMPORTANCE Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase.
Collapse
|
9
|
Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes. Trends Microbiol 2019; 26:692-702. [PMID: 29395731 DOI: 10.1016/j.tim.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
Abstract
The Gal4 transcription factor (TF) controls gene expression by binding the DNA sequence motif CGG(N11)CCG. Well studied versions regulate metabolism of glucose in Candida albicans and galactose in Saccharomyces cerevisiae. Gal4 is also found within Aspergillus species and shows a wide range of potential binding targets. Members of the CTG clade that reassigned CUG codons from leucine to serine lack the Gal80 binding domain of Gal4, and they use the TF to regulate only glycolytic genes. In this clade, the galactose catabolic pathway (also known as the Leloir pathway) genes are regulated by Rtg1/Rtg3. In the WGD species, the complete Gal4/Gal80 module is limited to regulation of the Leloir pathway, while glycolysis is controlled by Gcr1/Gcr2. This shows a switch of Gal4 from a generalist to a specialist within the ascomycetes, and the split of glucose and galactose metabolism into distinct regulatory circuits.
Collapse
|
10
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
11
|
Mount HO, Revie NM, Todd RT, Anstett K, Collins C, Costanzo M, Boone C, Robbins N, Selmecki A, Cowen LE. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 2018; 14:e1007319. [PMID: 29702647 PMCID: PMC5922528 DOI: 10.1371/journal.pgen.1007319] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections caused by the pathogen Candida albicans have transitioned from a rare curiosity to a major cause of human mortality. This is in part due to the emergence of resistance to the limited number of antifungals available to treat fungal infections. Azoles function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. Loss-of-function mutations in the ergosterol biosynthetic gene ERG3 mitigate azole toxicity and enable resistance that depends upon fungal stress responses. Here, we performed a genome-wide synthetic genetic array screen in Saccharomyces cerevisiae to map ERG3 genetic interactors and uncover novel circuitry important for azole resistance. We identified nine genes that enabled erg3-mediated azole resistance in the model yeast and found that only two of these genes had a conserved impact on resistance in C. albicans. Further, we screened a C. albicans homozygous deletion mutant library and identified 13 genes for which deletion enhances azole susceptibility. Two of the genes, RGD1 and PEP8, were also important for azole resistance acquired by diverse mechanisms. We discovered that loss of function of retrograde transport protein Pep8 overwhelms the functional capacity of the stress response regulator calcineurin, thereby abrogating azole resistance. To identify the mechanism through which the GTPase activator protein Rgd1 enables azole resistance, we selected for mutations that restore resistance in strains lacking Rgd1. Whole genome sequencing uncovered parallel adaptive mechanisms involving amplification of both chromosome 7 and a large segment of chromosome 3. Overexpression of a transporter gene on the right portion of chromosome 3, NPR2, was sufficient to enable azole resistance in the absence of Rgd1. Thus, we establish a novel mechanism of adaptation to drug-induced stress, define genetic circuitry underpinning azole resistance, and illustrate divergence in resistance circuitry over evolutionary time. Fungal infections caused by the pathogen Candida albicans pose a serious threat to human health. Treating these infections relies heavily on the azole antifungals, however, resistance to these drugs develops readily demanding novel therapeutic strategies. We performed large-scale systematic screens in both C. albicans and the model yeast Saccharomyces cerevisiae to identify genes that enable azole resistance. Our genome-wide screen in S. cerevisiae identified nine determinants of azole resistance, only two of which were important for resistance in C. albicans. Our screen of C. albicans mutants identified 13 genes for which deletion enhances susceptibility to azoles, including RGD1 and PEP8. We found that loss of Pep8 overwhelms the functional capacity of a key stress response regulator, calcineurin. In contrast, amplification of chromosome 7 and the right portion of chromosome 3 can restore resistance in strains lacking Rgd1, suggesting that Rgd1 may enable azole resistance by inducing genes in these amplified regions. Specifically, overexpression of a gene involved in transport on chromosome 3, NPR2, was sufficient to restore azole resistance in the absence of Rgd1. Thus, we establish novel circuitry important for antifungal drug resistance, and uncover adaptive mechanisms involving genomic plasticity that occur in response to drug induced stress.
Collapse
Affiliation(s)
| | - Nicole M. Revie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Kaitlin Anstett
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
13
|
Put3 Positively Regulates Proline Utilization in Candida albicans. mSphere 2017; 2:mSphere00354-17. [PMID: 29242833 PMCID: PMC5729217 DOI: 10.1128/msphere.00354-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Candida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen. The zinc cluster transcription factor Put3 was initially characterized in Saccharomyces cerevisiae as the transcriptional activator of PUT1 and PUT2, two genes acting early in the proline assimilation pathway. We have used phenotypic studies, transcription profiling, and chromatin immunoprecipitation with microarray technology (ChIP-chip) to establish that unlike S. cerevisiae, which only uses proline as a nitrogen source, Candida albicans can use proline as a nitrogen source, a carbon source, or a source of both nitrogen and carbon. However, a C. albicans put3 null mutant cannot grow on proline, suggesting that as in S. cerevisiae, C. albicans Put3 (CaPut3) is required for proline catabolism, and because the C. albicans put3 null mutant grew efficiently on glutamate as the sole carbon or nitrogen source, it appears that CaPut3 also regulates the early genes of the pathway. CaPut3 showed direct binding to the CaPUT1 promoter, and both PUT1 and PUT2 were upregulated in response to proline addition in a Put3-dependent manner, as well as in a C. albicans strain expressing a hyperactive Put3. CaPut3 directs proline degradation even in the presence of a good nitrogen source such as ammonia, which contrasts with S. cerevisiae Put3 (ScPut3)-regulated proline catabolism, which only occurs in the absence of a rich nitrogen source. Thus, while overall proline regulatory circuitry differs between S. cerevisiae and C. albicans, the specific role of Put3 appears fundamentally conserved. IMPORTANCECandida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen.
Collapse
|
14
|
Dalal CK, Johnson AD. How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes Dev 2017; 31:1397-1405. [PMID: 28860157 PMCID: PMC5588923 DOI: 10.1101/gad.303362.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review by Dalal and Johnson focuses on the evolutionary rewiring of transcription regulators and the conservation of patterns of gene expression. They describe how preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution. Transcription regulators bind to cis-regulatory sequences and thereby control the expression of target genes. While transcription regulators and the target genes that they regulate are often deeply conserved across species, the connections between the two change extensively over evolutionary timescales. In this review, we discuss case studies where, despite this extensive evolutionary rewiring, the resulting patterns of gene expression are preserved. We also discuss in silico models that reach the same general conclusions and provide additional insights into how this process occurs. Together, these approaches make a strong case that the preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution.
Collapse
Affiliation(s)
- Chiraj K Dalal
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
15
|
The rewiring of transcription circuits in evolution. Curr Opin Genet Dev 2017; 47:121-127. [PMID: 29120735 DOI: 10.1016/j.gde.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
The binding of transcription regulators to cis-regulatory sequences is a key step through which all cells regulate expression of their genes. Due to gains and losses of cis-regulatory sequences and changes in the transcription regulators themselves, the binding connections between regulators and their target genes rapidly change over evolutionary time and constitute a major source of biological novelty. This review covers recent work, carried out in a wide range of species, that addresses the overall extent of these evolutionary changes, their consequences, and some of the molecular mechanisms that lie behind them.
Collapse
|
16
|
Chitty JL, Fraser JA. Purine Acquisition and Synthesis by Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5020033. [PMID: 28594372 PMCID: PMC5488104 DOI: 10.3390/microorganisms5020033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023] Open
Abstract
While members of the Kingdom Fungi are found across many of the world's most hostile environments, only a limited number of species can thrive within the human host. The causative agents of the most common invasive fungal infections are Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. During the infection process, these fungi must not only combat the host immune system while adapting to dramatic changes in temperature and pH, but also acquire sufficient nutrients to enable growth and dissemination in the host. One class of nutrients required by fungi, which is found in varying concentrations in their environmental niches and the human host, is the purines. These nitrogen-containing heterocycles are one of the most abundant organic molecules in nature and are required for roles as diverse as signal transduction, energy metabolism and DNA synthesis. The most common life-threatening fungal pathogens can degrade, salvage and synthesize de novo purines through a number of enzymatic steps that are conserved. While these enable them to adapt to the changing purine availability in the environment, only de novo purine biosynthesis is essential during infection and therefore an attractive antimycotic target.
Collapse
Affiliation(s)
- Jessica L Chitty
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
17
|
Joshua IM, Höfken T. From Lipid Homeostasis to Differentiation: Old and New Functions of the Zinc Cluster Proteins Ecm22, Upc2, Sut1 and Sut2. Int J Mol Sci 2017; 18:ijms18040772. [PMID: 28379181 PMCID: PMC5412356 DOI: 10.3390/ijms18040772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae. These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida. Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida.
Collapse
Affiliation(s)
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
18
|
Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Antimicrob Agents Chemother 2016; 60:7468-7480. [PMID: 27736764 DOI: 10.1128/aac.01959-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Invasive fungal infections are a leading cause of human mortality. Effective treatment is hindered by the rapid emergence of resistance to the limited number of antifungal drugs, demanding new strategies to treat life-threatening fungal infections. Here, we explore a powerful strategy to enhance antifungal efficacy against leading human fungal pathogens by using the natural product beauvericin. We found that beauvericin potentiates the activity of azole antifungals against azole-resistant Candida isolates via inhibition of multidrug efflux and that beauvericin itself is effluxed via Yor1. As observed in Saccharomyces cerevisiae, we determined that beauvericin inhibits TOR signaling in Candida albicans To further characterize beauvericin activity in C. albicans, we leveraged genome sequencing of beauvericin-resistant mutants. Resistance was conferred by mutations in transcription factor genes TAC1, a key regulator of multidrug efflux, and ZCF29, which was uncharacterized. Transcriptional profiling and chromatin immunoprecipitation coupled to microarray analyses revealed that Zcf29 binds to and regulates the expression of multidrug transporter genes. Beyond drug resistance, we also discovered that beauvericin blocks the C. albicans morphogenetic transition from yeast to filamentous growth in response to diverse cues. We found that beauvericin represses the expression of many filament-specific genes, including the transcription factor BRG1 Thus, we illuminate novel circuitry regulating multidrug efflux and establish that simultaneously targeting drug resistance and morphogenesis provides a promising strategy to combat life-threatening fungal infections.
Collapse
|
19
|
Abstract
Candida albicans is an important human fungal pathogen, in terms of both its clinical significance and its use as an experimental model for scientific investigation. Although this opportunistic pathogen is a natural component of the human flora, it can cause life-threatening infections in immunosuppressed patients. There are currently a limited number of antifungal molecules and drug targets, and increasing resistance to the front-line therapeutics, demonstrating a clear need for new antifungal drugs. Understanding the biology of this pathogen is an important prerequisite for identifying new drug targets for antifungal therapeutics. In this review, we highlight some recent developments that help us to understand how virulence traits are regulated at the molecular level, in addition to technical advances that improve the ability of genome editing in C. albicans.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre-CRI, CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada; Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|