1
|
Schneider DI, Ehrman L, Engl T, Kaltenpoth M, Hua-Van A, Le Rouzic A, Miller WJ. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behav Genet 2019; 49:83-98. [PMID: 30456532 PMCID: PMC6327003 DOI: 10.1007/s10519-018-9937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Lee Ehrman
- Natural Sciences, State University of New York, Purchase College, Purchase, NY, USA
| | - Tobias Engl
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Engl T, Michalkova V, Weiss BL, Uzel GD, Takac P, Miller WJ, Abd-Alla AMM, Aksoy S, Kaltenpoth M. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol 2018; 18:145. [PMID: 30470188 PMCID: PMC6251160 DOI: 10.1186/s12866-018-1292-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host's nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography - mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies. RESULTS All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays. CONCLUSIONS While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.
Collapse
Affiliation(s)
- Tobias Engl
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Veronika Michalkova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
- Present Address: Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Güler D Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Laboratories of Genome Dynamics, Department Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Austria
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Abstract
Symbiotic microorganisms can influence the fitness of their insect hosts by modulating pheromone production and perception.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| |
Collapse
|