1
|
Ye YY, Liu DD, Tang RJ, Gong Y, Zhang CY, Mei P, Ma CL, Chen JD. Bulked Segregant RNA-Seq Reveals Different Gene Expression Patterns and Mutant Genes Associated with the Zigzag Pattern of Tea Plants ( Camellia sinensis). Int J Mol Sci 2024; 25:4549. [PMID: 38674133 PMCID: PMC11049935 DOI: 10.3390/ijms25084549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chun-Lei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| | - Jie-Dan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.-Y.Y.); (D.-D.L.); (R.-J.T.); (Y.G.); (C.-Y.Z.); (P.M.)
| |
Collapse
|
2
|
Luo Z, Gao M, Zhao X, Wang L, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Anatomical observation and transcriptome analysis of branch-twisted mutations in Chinese jujube. BMC Genomics 2023; 24:500. [PMID: 37644409 PMCID: PMC10466873 DOI: 10.1186/s12864-023-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Plant organs grow in a certain direction and organ twisted growth, a rare and distinctive trait, is associated with internal structure changes and special genes. The twisted branch mutant of Chinese jujube jujube, an important fruit tree native to China and introduced to nearly 50 countries, provides new typical materials for exploration of plant twisted growth. RESULTS In this study, the cytological characteristics and related genes of twisted branches in Chinese jujube were revealed by microscopy observation and transcriptome analysis. The unique coexistence of primary and secondary structures appeared in the twisted parts of branches, and special structures such as collateral bundle, cortical bundles, and internal phloem were formed. Ninety differentially expressed genes of 'Dongzao' and its twisted mutant were observed, in which ZjTBL43, ZjFLA11, ZjFLA12 and ZjIQD1 were selected as candidate genes. ZjTBL43 was homologous to AtTBL43 in Arabidopsis, which was involved in the synthesis and deposition of cellular secondary wall cellulose. The attbl43 mutant showed significant inflorescence stem bending growth. The transgenic lines of attbl43 with overexpression of ZjTBL43 were phenotypically normal.The branch twisted growth may be caused by mutations in ZjTBL43 in Chinese jujube. AtIQD10, AtFLA11 and AtFLA12 were homologous to ZjIQD1, ZjFLA11 and ZjFLA12, respectively. However, the phenotype of their function defect mutants was normal. CONCLUSION In summary, these findings will provide new insights into the plant organ twisted growth and a reference for investigation of controlling mechanisms of plant growth direction.
Collapse
Affiliation(s)
- Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 2018; 7:e38161. [PMID: 30226465 PMCID: PMC6143341 DOI: 10.7554/elife.38161] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/28/2018] [Indexed: 11/13/2022] Open
Abstract
Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Yuanjie Chen
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Behruz Bozorg
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
| | - Jack Clough
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Henrik Jönsson
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Siobhan A Braybrook
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|