1
|
Alouit A, Gavaret M, Ramdani C, Lindberg PG, Dupin L. Cortical activations associated with spatial remapping of finger touch using EEG. Cereb Cortex 2024; 34:bhae161. [PMID: 38642106 DOI: 10.1093/cercor/bhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.
Collapse
Affiliation(s)
- Anaëlle Alouit
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Service de neurophysiologie clinique, 1 Rue Cabanis, F-75014 Paris, France
| | - Céline Ramdani
- Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Påvel G Lindberg
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Lucile Dupin
- Université Paris Cité, INCC UMR 8002, CNRS, 45 Rue des Saints-Pères, F-75006 Paris, France
| |
Collapse
|
2
|
Kong G, Cataldo A, Nitu M, Dupin L, Gomi H, Haggard P. Interhemispheric communication during haptic self-perception. Proc Biol Sci 2022; 289:20221977. [PMID: 36475437 PMCID: PMC9727658 DOI: 10.1098/rspb.2022.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the haptic exploration of a planar surface, slight resistances against the hand's movement are illusorily perceived as asperities (bumps) in the surface. If the surface being touched is one's own skin, an actual bump would also produce increased tactile pressure from the moving finger onto the skin. We investigated how kinaesthetic and tactile signals combine to produce haptic perceptions during self-touch. Participants performed two successive movements with the right hand. A haptic force-control robot applied resistances to both movements, and participants judged which movement was felt to contain the larger bump. An additional robot delivered simultaneous but task-irrelevant tactile stroking to the left forearm. These strokes contained either increased or decreased tactile pressure synchronized with the resistance-induced illusory bump encountered by the right hand. We found that the size of bumps perceived by the right hand was enhanced by an increase in left tactile pressure, but also by a decrease. Tactile event detection was thus transferred interhemispherically, but the sign of the tactile information was not respected. Randomizing (rather than blocking) the presentation order of left tactile stimuli abolished these interhemispheric enhancement effects. Thus, interhemispheric transfer during bimanual self-touch requires a stable model of temporally synchronized events, but does not require geometric consistency between hemispheric information, nor between tactile and kinaesthetic representations of a single common object.
Collapse
Affiliation(s)
- Gaiqing Kong
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Neuroscience Research Centre of Lyon, INSERM U1028—CNRS UMR5292, Inserm Building, 16 avenue du doyen Lépine, 69500 Bron, France
| | - Antonio Cataldo
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Institute of Philosophy, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| | - Miruna Nitu
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK
| | - Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U 1266—Université de Paris—Hôpital Sainte-Anne, Paris, France
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17–19 Queen Square, London WCIN 3AZ, UK,Chaire Blaise Pascal de la Région Ile de France, Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
3
|
Dupin L, Cuenca M, Baron JC, Maier MA, Lindberg PG. Shrinking of spatial hand representation but not of objects across the lifespan. Cortex 2021; 146:173-185. [PMID: 34883309 DOI: 10.1016/j.cortex.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Perception and action are based on cerebral spatial representations of the body and the external world. However, spatial representations differ from the physical characteristics of body and external space (e.g., objects). It remains unclear whether these discrepancies are related to functional requirements of action and are shared between different spatial representations, indicating common brain processes. We hypothesized that distortions of spatial hand representation would be affected by age, sensorimotor practice and external space representation. We assessed hand representations using tactile and verbal localization tasks and quantified object representation in three age groups (20-79 yrs, total n = 60). Our results show significant shrinking of spatial hand representations (hand width) with age, unrelated to sensorimotor functions. No such shrinking occurred in spatial object representations despite some common characteristics with hand representations. Therefore, spatial properties of body representation partially share characteristics of object representation but also evolve independently across the lifespan.
Collapse
Affiliation(s)
- Lucile Dupin
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France.
| | - Macarena Cuenca
- Centre de Recherche Clinique, GHU, Hôpital Sainte-Anne, Paris, France
| | - Jean-Claude Baron
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Marc A Maier
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | - Påvel G Lindberg
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| |
Collapse
|