1
|
Kronauer DJC. The unusual genetics of invasive ants. Science 2023; 380:33-34. [PMID: 37023202 DOI: 10.1126/science.adh1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The males of an invasive ant species are chimeras of two distinct genetic lineages.
Collapse
Affiliation(s)
- Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
2
|
da Silva J. The kin selection theory of genomic imprinting and modes of reproduction in the eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:677-695. [PMID: 36457233 DOI: 10.1111/brv.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Genomic imprinting is known from flowering plants and mammals but has not been confirmed for the Hymenoptera even though the eusocial Hymenoptera are prime candidates for this peculiar form of gene expression. Here, the kin selection theory of genomic imprinting is reviewed and applied to the eusocial Hymenoptera. The evidence for imprinting in eusocial Hymenoptera with the typical mode of reproduction, involving the sexual production of diploid female offspring, which develop into workers or gynes, and the arrhenotokous parthenogenesis of haploid males, is also reviewed briefly. However, the focus of this review is how atypical modes of reproduction, involving thelytokous parthenogenesis, hybridisation and androgenesis, may also select for imprinting. In particular, naturally occurring hybridisation in several genera of ants may provide useful tests of the role of kin selection in the evolution of imprinting. Hybridisation is expected to disrupt the coadaptation of antagonistically imprinted loci, and thus affect the phenotypes of hybrids. Some of the limited data available on hybrid worker reproduction and on colony sex ratios support predictions about patterns of imprinting derived from kin selection theory.
Collapse
Affiliation(s)
- Jack da Silva
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Tseng SP, Darras H, Hsu PW, Yoshimura T, Lee CY, Wetterer JK, Keller L, Yang CCS. Genetic analysis reveals the putative native range and widespread double-clonal reproduction in the invasive longhorn crazy ant. Mol Ecol 2023; 32:1020-1033. [PMID: 36527320 DOI: 10.1111/mec.16827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Clonal reproduction can provide an advantage for invasive species to establish as it can circumvent inbreeding depression which often plagues introduced populations. The world's most widespread invasive ant, Paratrechina longicornis, was previously found to display a double-clonal reproduction system, whereby both males and queens are produced clonally, resulting in separate male and queen lineages, while workers are produced sexually. Under this unusual reproduction mode, inbreeding is avoided in workers as they carry hybrid interlineage genomes. Despite the ubiquitous distribution of P. longicornis, the significance of this reproductive system for the ant's remarkable success remains unclear, as its prevalence is still unknown. Further investigation into the controversial native origin of P. longicornis is also required to reconstruct the evolutionary histories of double-clonal lineages. Here, we examine genetic variation and characterize the reproduction mode of P. longicornis populations sampled worldwide using microsatellites and mitochondrial DNA sequences to infer the ant's putative native range and the distribution of the double-clonal reproductive system. Analyses of global genetic variations indicate that the Indian subcontinent is a genetic diversity hotspot of this species, suggesting that P. longicornis probably originates from this geographical area. Our analyses revealed that both the inferred native and introduced populations exhibit double-clonal reproduction, with queens and males around the globe belonging to two separate, nonrecombining clonal lineages. By contrast, workers are highly heterozygous because they are first-generation interlineage hybrids. Overall, these data indicate a worldwide prevalence of double clonality in P. longicornis and support the prediction that the unusual genetic system may have pre-adapted this ant for global colonization by maintaining heterozygosity in the worker force and alleviating genetic bottlenecks.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan.,Department of Entomology, University of California, Riverside, California, USA.,Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hugo Darras
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Po-Wei Hsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, California, USA
| | - James K Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Weyna A, Bourouina L, Galtier N, Romiguier J. Detection of F1 hybrids from single-genome data reveals frequent hybridization in Hymenoptera and particularly ants. Mol Biol Evol 2022; 39:6562163. [PMID: 35363317 PMCID: PMC9021736 DOI: 10.1093/molbev/msac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.
Collapse
Affiliation(s)
- Arthur Weyna
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Lucille Bourouina
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution (UMR 5554), University of Montpellier, CNRS
| |
Collapse
|
5
|
Weyna A, Romiguier J, Mullon C. Hybridization enables the fixation of selfish queen genotypes in eusocial colonies. Evol Lett 2021; 5:582-594. [PMID: 34917398 PMCID: PMC8645202 DOI: 10.1002/evl3.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 01/25/2023] Open
Abstract
A eusocial colony typically consists of two main castes: queens that reproduce and sterile workers that help them. This division of labor, however, is vulnerable to genetic elements that favor the development of their carriers into queens. Several factors, such as intracolonial relatedness, can modulate the spread of such caste-biasing genotypes. Here we investigate the effects of a notable yet understudied ecological setting: where larvae produced by hybridization develop into sterile workers. Using mathematical modeling, we show that the coevolution of hybridization with caste determination readily triggers an evolutionary arms race between nonhybrid larvae that increasingly develop into queens, and queens that increasingly hybridize to produce workers. Even where hybridization reduces worker function and colony fitness, this race can lead to the loss of developmental plasticity and to genetically hard-wired caste determination. Overall, our results may help understand the repeated evolution toward remarkable reproductive systems (e.g., social hybridogenesis) observed in several ant species.
Collapse
Affiliation(s)
- Arthur Weyna
- Institut des Sciences de l'Evolution (UMR 5554)University of Montpellier, CNRSMontpellier34000France
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution (UMR 5554)University of Montpellier, CNRSMontpellier34000France
| | - Charles Mullon
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
| |
Collapse
|
6
|
Abstract
Eusociality represents an extreme form of social behavior characterized by a reproductive division of labor. Eusociality necessarily evolved through kin selection, which requires interactions among related individuals. However, many eusocial taxa also show cooperation between non-kin groups, challenging the idea that cooperative actions should only occur among relatives. This review explores the causes and consequences of non-kin cooperation in ants. Ants display a diversity of behaviors that lead to non-kin cooperation within and between species. These interactions occur among both reproductive and non-reproductive individuals. The proximate and ultimate mechanisms leading to non-kin cooperative interactions differ substantially depending on the biotic and abiotic environment. We end this review with directions for future research and suggest that the investigation of non-kin cooperative actions provides insight into processes leading to social evolution.
Collapse
|
7
|
Eyer PA, Vargo EL. Breeding structure and invasiveness in social insects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:24-30. [PMID: 33549724 DOI: 10.1016/j.cois.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plasticity in life history traits is commonly used to explain the invasion success of social insects. While intraspecific plasticity is often recognized, interspecific variability is easily overlooked, whereby different species exhibit different strategies. The presence of many queens per colony and the collapse of colony boundaries have favored invasiveness for many ant species. However, these strategies are absent from other successful social invaders. Here, we report that various life-history traits may differentially enhance the invasion success in social insects. We suggest that other aspects of their breeding system, like asexual reproduction, intranidal mating and pre-adaptation to inbreeding may enhance their invasion success. Thorough comparative studies between native and introduced populations or studies of closely related species will help identify additional traits favoring the invasion success of social insects, and ultimately provide a more comprehensive picture of the evolutionary factors enhancing invasiveness across this phylogenetically and ecologically diverse group.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
8
|
Comprehensive analysis of male-free reproduction in Monomorium triviale (Formicidae: Myrmicinae). PLoS One 2021; 16:e0246710. [PMID: 33914749 PMCID: PMC8084239 DOI: 10.1371/journal.pone.0246710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
We report comprehensive evidence for obligatory thelytokous parthenogenesis in an ant Monomorium triviale. This species is characterized by distinct queen–worker dimorphism with strict reproductive division of labor: queens produce both workers and new queens without mating, whereas workers are completely sterile. We collected 333 nests of this species from 14 localities and three laboratory-reared populations in Japan. All wild queens dissected had no sperm in their spermathecae. Laboratory observation confirmed that virgin queens produced workers without mating. Furthermore, microsatellite genotyping showed identical heterozygous genotypes between mothers and their respective daughters, suggesting an extremely low probability of sexual reproduction. Microbial analysis detected no bacterial genera that are known to induce thelytokous parthenogenesis in Hymenoptera. Finally, the lack of variation in partial sequences of mitochondrial DNA among individuals sampled from across Japan suggests recent rapid spread or selective sweep. M. triviale would be a promising model system of superorganism-like adaptation through comparative analysis with well-studied sexual congeners, including the pharaoh ant M. pharaonis.
Collapse
|
9
|
Nipitwattanaphon M, Swatdipong A, Hasin S, Wang J. Population Genetic and Social Structure Survey of Solenopsis geminata in Thailand. Zool Stud 2020; 59:e22. [PMID: 33262845 PMCID: PMC7688402 DOI: 10.6620/zs.2020.59-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Fire ants have long been known to be a major pest and have recently attracted renewed widespread attention due to the invasion of Solenopsis species, especially S. invicta, into many countries in Asia and Australia. Here, we surveyed fire ant specimens in Thailand with the aims of studying their colony biology and population structure. We sampled 38 colonies distributed in agricultural and urban areas throughout Thailand for species identification and found that all were S. geminata. We further genotyped 13 microsatellite loci from 576 workers from 23 of these colonies. Analysis of these genetic data revealed that all colonies were polygynous with only a few queens. Queens from the same colonies were highly genetically related. Population structure was partitioned into two clusters. Pairwise F ST values revealed very high genetic differentiation between colonies suggesting low gene flow among populations. This result suggests that queens were locally mated and founded colonies by a budding strategy. Isolation-by-distance among local populations was not significant.
Collapse
Affiliation(s)
- Mingkwan Nipitwattanaphon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand. E-mail: (Nipitwattanaphon); (Swatdipong)
| | - Akarapong Swatdipong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand. E-mail: (Nipitwattanaphon); (Swatdipong)
| | - Sasitorn Hasin
- Innovation of Environmental Management, College of Innovative Management, Valaya Alongkorn Rajabhat University under the Royal Patronage, Pathumthani, Thailand. E-mail: (Hasin)
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Nankang 115, Taipei, Taiwan. E-mail: (Wang)
| |
Collapse
|
10
|
Trible W, McKenzie SK, Kronauer DJC. Globally invasive populations of the clonal raider ant are derived from Bangladesh. Biol Lett 2020; 16:20200105. [PMID: 32544382 PMCID: PMC7336853 DOI: 10.1098/rsbl.2020.0105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Identifying the native range of invasive species is useful to understand their evolution and natural history, as well as to develop new methods to control potentially harmful introduced organisms. The clonal raider ant, Ooceraea biroi, is an introduced species and an increasingly important social insect model organism, but its native range remains unknown. Here, we report a new series of O. biroi collections from Bangladesh, Singapore, Vietnam and China. We use a molecular phylogeny constructed with five gene fragments from 27 samples to determine that invasive lineages of O. biroi originated in Bangladesh. These lineages may have spread from Bangladesh via the historically significant Bay of Bengal shipping ports. Ooceraea biroi shares multiple features of its biology with other introduced ants, including parthenogenesis, retention of heterozygosity and presence of multiple egg-layers in the colony. Using laboratory rearing and microsatellite markers, we show that colonies collected from disturbed habitat in Bangladesh have these traits in common with colonies from the invasive range. Ancestral populations with sexual reproduction in primary habitats either remain to be discovered or have gone extinct. Our findings advance our understanding of the global spread of the clonal raider ant and highlight a suite of general traits that make certain ants prone to becoming invasive.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Center for Systems Biology, Harvard University, 52 Oxford Street, NW 369.20, Cambridge, MA 02138, USA
| | - Sean K. McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
11
|
Kuhn A, Darras H, Paknia O, Aron S. Repeated evolution of queen parthenogenesis and social hybridogenesis in
Cataglyphis
desert ants. Mol Ecol 2019; 29:549-564. [DOI: 10.1111/mec.15283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Alexandre Kuhn
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| | - Hugo Darras
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
- Department of Ecology and Evolution Biophore UNIL Sorge University of Lausanne Lausanne Switzerland
| | - Omid Paknia
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | - Serge Aron
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|