1
|
Eldeeb MA, Zhou W, Esmaili M, Elgohary AM, Wei H, Fahlman RP. N-degron-mediated degradation of the proteolytically activated form of PKC-theta kinase attenuates its pro-apoptotic function. Cell Signal 2023; 110:110830. [PMID: 37516395 DOI: 10.1016/j.cellsig.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Cellular signalling cues lead to the initiation of apoptotic pathways and often result in the activation of caspases which in turn cause the generation of proteolytically generated protein fragments with new or altered functions. Mounting number of studies reveal that the activity of these proteolytically activated protein fragments can be counteracted via their selective degradation by the N-degron degradation pathways. Here, we investigate the proteolytically generated fragment of the PKC theta kinase, where we demonstrate the first report on the stability of this pro-apoptotic protein fragment. We have determined that the pro-apoptotic cleaved fragment of PKC-theta is unstable in cells because its N-terminal lysine targets it for proteasomal degradation via the N-degron degradation pathway and this degradation is inhibited by mutating the destabilizing N-termini, knockdown of the UBR1 and UBR2 E3 ligases. Tellingly, we demonstrate that the metabolic stabilization of the cleaved fragment of PKC-theta or inhibition of the N-degron degradation augments the apoptosis-inducing effect of staurosporine in Jurkat cells. Notably, we have unveiled that the cleaved fragment of PKC theta, per se, can induce apoptotic cell death in Jurkat T-cell leukemia. Our results expand the functional scope of mammalian N-degron degradation pathways, and support the notion that targeting N-degron degradation machinery may have promising therapeutic implications in cancer cells.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Wenbin Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alaa M Elgohary
- Biophysics department, Faculty of science, Cairo University, Egypt
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Ragheb MA, Soliman MH, Elzayat EM, Mohamed MS, El-Ekiaby N, Abdelaziz AI, Abdel-Wahab AHA. MicroRNA-520c-3p Modulates Doxorubicin-Chemosensitivity in HepG2 Cells. Anticancer Agents Med Chem 2021; 21:237-245. [PMID: 32357822 DOI: 10.2174/1871520620666200502004817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is one of the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance is one of chemotherapy's significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. OBJECTIVE Investigating the role of microRNA-520c-3p (miR-520c-3p) in the enhancement of the anti-tumor effect of DOX against HepG2 cells. METHODS Expression profile for liver-related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. The expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and p53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using the western blot technique. RESULTS The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis, including LEF1, CDK2, CDH1, VIM, Mcl-1 and p53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. CONCLUSION Our data referred to the tumor suppressor function of miR-520c-3p that could modulate the chemosensitivity of HepG2 cells towards DOX treatment, providing a promising therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mervat S Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, NewGiza University (NGU), NewGiza, Cairo, Egypt
| | | | | |
Collapse
|
4
|
Soliman MH, Ragheb MA, Elzayat EM, Mohamed MS, El-Ekiaby N, Abdelaziz AI, Abdel-Wahab AHA. MicroRNA-372-3p Predicts Response of TACE Patients Treated with Doxorubicin and Enhances Chemosensitivity in Hepatocellular Carcinoma. Anticancer Agents Med Chem 2021; 21:246-253. [PMID: 32416702 DOI: 10.2174/1871520620666200516145830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of factors to detect and improve chemotherapy.response in cancer is the main concern. microRNA-372-3p (miR-372-3p) has been demonstrated to play a crucial role in cellular proliferation, apoptosis and metastasis of various cancers including Hepatocellular Carcinoma (HCC). However, its contribution towards Doxorubicin (Dox) chemosensitivity in HCC has never been studied. OBJECTIVE This study aims to investigate the potential role of miR-372-3p in enhancing Dox effects on HCC cell line (HepG2). Additionally, the correlation between miR-372-3p and HCC patients who received Transarterial Chemoembolization (TACE) with Dox treatment has been analyzed. METHODS Different cell processes were elucidated by cell viability, colony formation, apoptosis and wound healing assays after miR-372-3p transfection in HepG2 cells Furthermore, the miR-372-3p level has been estimated in the blood of primary HCC patients treated with TACE/Dox by quantitative real-time PCR assay. Receiver Operating Curve (ROC) analysis for serum miR-372-3p was constructed for its prognostic significance. Finally, the protein level of Mcl-1, the anti-apoptotic player, has been evaluated using western blot. RESULTS We found a significantly higher level of miR-372-3p in the blood of the responder group of HCC patients who received TACE with Dox than of non-responders. Ectopic expression of miR-372-3p reduced cell proliferation, migration and significantly induced apoptosis in HepG2 cells which was coupled with a decrease of anti-apoptotic protein Mcl-1. CONCLUSION Our study demonstrated that miR-372-3p acts as a tumor suppressor in HCC and can act as a predictor biomarker for drug response. Furthermore, the data referred for the first time its potential role in drug sensitivity that might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Emad M Elzayat
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mervat S Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada El-Ekiaby
- School of Medicine, New Giza University (NGU), Cairo, Egypt
| | | | | |
Collapse
|
5
|
Eldeeb MA. N-Terminal-Dependent Protein Degradation and Targeting Cancer Cells. Anticancer Agents Med Chem 2021; 21:231-236. [PMID: 32814541 DOI: 10.2174/1871520620666200819112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/11/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
Intracellular protein degradation is mediated selectively by the Ubiquitin-Proteasome System (UPS) and autophagic-lysosomal system in mammalian cells. Many cellular and physiological processes, such as cell division, cell differentiation, and cellular demise, are fine-tuned via the UPS-mediated protein degradation. Notably, impairment of UPS contributes to human disorders, including cancer and neurodegeneration. The proteasome- dependent N-degron pathways mediate the degradation of proteins through their destabilizing aminoterminal residues. Recent advances unveiled that targeting N-degron proteolytic pathways can aid in sensitizing some cancer cells to chemotherapeutic agents. Furthermore, interestingly, exploiting the N-degron feature, the simplest degradation signal in mammals, and fusing it to a ligand specific for Estrogen-Related Receptor alpha (ERRa) has demonstrated its utility in ERRa knockdown, via N-terminal dependent degradation, and also its efficiency in the inhibition of growth of breast cancer cells. These recent advances uncover the therapeutic implications of targeting and exploiting N-degron proteolytic pathways to curb growth and migration of cancer cells.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
An X, Wei Z, Ran B, Tian H, Gu H, Liu Y, Cui H, Zhu S. Histone Deacetylase Inhibitor Trichostatin A Suppresses Cell Proliferation and Induces Apoptosis by Regulating the PI3K/AKT Signalling Pathway in Gastric Cancer Cells. Anticancer Agents Med Chem 2021; 20:2114-2124. [PMID: 32593284 DOI: 10.2174/1871520620666200627204857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gastric cancer, a common malignant tumour worldwide, has a relatively poor prognosis and is a serious threat to human health. Histone Deacetylase Inhibitors (HDACi) are anticancer agents that are known to affect the cell growth of different cancer types. Trichostatin A (TSA) selectively inhibits the class I and II mammalian Histone Deacetylase (HDAC) family enzymes and regulates many cell processes. Still, the underlying mechanisms of HDACs are not fully understood in gastric cancer. OBJECTIVE This study aims to investigate the antitumor effect and the mechanism of growth modulation of gastric cancer cells by TSA. METHODS The cell proliferation of gastric cancer cells was measured by MTT and BrdU immunofluorescence assays. Soft agar assay was used to detect the colony formation ability of gastric cancer cells. Flow cytometry was used to examine cell cycle and apoptosis. Western blot was employed to detect protein expression of target factors. RESULTS TSA inhibits the proliferation of MKN-45 and SGC-7901 cells and leads to significant repression of colony number and size. Flow cytometry assays show TSA induces cell cycle arrest at G1 phase and apoptosis, and TSA effects the expression of related factors in the mitochondrial apoptotic signalling and cell cycle-related regulatory pathways. Furthermore, TSA increased histone H3K27 acetylation and downregulated the expression of PI3K and p-AKT. CONCLUSION Downregulating PI3K/AKT pathway activation is involved in TSA-mediated proliferation inhibition of gastric cancer.
Collapse
Affiliation(s)
- Xinli An
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zekun Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hao Tian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Yan Liu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing, 400715, China,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| |
Collapse
|
7
|
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase. Curr Genet 2020; 66:693-701. [PMID: 32157382 DOI: 10.1007/s00294-020-01062-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses including high levels of reactive oxygen species and protein misfolding, which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate abnormal dysfunctional mitochondria. One such mechanism is mitophagy, a process which involves PTEN-induced putative kinase 1 (PINK1), a mitochondrial Ser/Thr kinase and Parkin, an E3 ubiquitin ligase, each encoded by genes responsible for early-onset autosomal recessive familial PD. Over 100 loss-of-function mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been reported to cause autosomal recessive early-onset PD. PINK1 acts upstream of Parkin and is essential for the mitochondrial localization and activation of Parkin. Upon mitochondrial damage, PINK1 builds up on the outer mitochondrial membrane (OMM) and mediates the activation of Parkin. Activated Parkin then ubiquitinates numerous OMM proteins, eliciting mitochondrial autophagy (mitophagy). As a result, damaged mitochondrial components can be selectively eliminated. Thus, PINK1 acts a sensor of damage via fine-tuning of its levels on mitochondria, where it activates Parkin to orchestrate the clearance of unhealthy mitochondria. Previous work has unveiled that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of PINK1, and thus fine-tune PINK1-dependent mitochondrial quality control pathway. Herein, we briefly discuss the interconnection between N-end rule degradation pathways and mitophagy in the context of N-degron mediated degradation of mitochondrial kinase PINK1 and highlight some of the future prospects.
Collapse
|
8
|
Eldeeb MA, Ragheb MA, Esmaili M, Hussein F. Physiological State Dictates the Proteasomal-Mediated Purging of Misfolded Protein Fragments. Protein Pept Lett 2019; 27:251-255. [PMID: 31738130 DOI: 10.2174/0929866526666191026111951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
A pivotal feature that underlies the development of neurodegeneration is the accumulation of protein aggregates. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate the misfolded abnormal proteins. Chaperones identify any otherwise abnormal conformations in proteins and often help them to regain their correct conformation. However, if repair is not an option, the abnormal protein is selectively degraded to prevent its oligomerization into toxic multimeric complexes. Autophagiclysosomal system and the ubiquitin-proteasome system mediate the targeted degradation of the aberrant protein fragments. Despite the increasing understanding of the molecular counteracting responses toward the accumulation of dysfunctional misfolded proteins, the molecular links between the upstream physiological inputs and the clearance of abnormal misfolded proteins is relatively poorly understood. Recent work has demonstrated that certain physiological states such as vigorous exercise and fasting may enhance the ability of mammalian cells to clear misfolded, toxic and aberrant protein fragments. These findings unveil a novel mechanism that activates the cells' protein-disposal machinery, facilitating the adaptation process of cellular proteome to fluctuations in cellular demands and alterations of environmental cues. Herein, we briefly discuss the molecular interconnection between certain physiological cues and proteasomal degradation pathway in the context of these interesting findings and highlight some of the future prospects.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Faraz Hussein
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Park W, Park S, Song G, Lim W. Inhibitory Effects of Osthole on Human Breast Cancer Cell Progression via Induction of Cell Cycle Arrest, Mitochondrial Dysfunction, and ER Stress. Nutrients 2019; 11:nu11112777. [PMID: 31731635 PMCID: PMC6893636 DOI: 10.3390/nu11112777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in women. Although, recently, the number of pathological studies of breast cancer have increased, it is necessary to identify a novel compound that targets multiple signaling pathways involved in breast cancer. METHODS The effects of osthole on cell viability, apoptosis, mitochondria-mediated apoptosis, production of reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress proteins of BT-474 and MCF-7 breast cancer cell lines were investigated. Signal transduction pathways in both cells in response to osthole were determined by western blot analyses. RESULTS Here, we demonstrated that osthole inhibited cellular proliferation and induced cell cycle arrest through modulation of cell cycle regulatory genes in BT-474 and MCF-7 cells. Additionally, osthole induced loss of mitochondrial membrane potential (MMP), intracellular calcium imbalance, and ER stress. Moreover, osthole induced apoptosis by activating the pro-apoptotic protein, Bax, in both cell lines. Osthole regulated phosphorylation of signaling proteins such as Akt and ERK1/2 in human breast cancer cells. Furthermore, osthole-induced activation of JNK protein-mediated apoptosis in both cell lines. CONCLUSIONS Collectively, the results of the present study indicated that osthole may ameliorate breast cancer and can be a promising therapeutic agent for treatment of breast cancer.
Collapse
Affiliation(s)
- Wonhyoung Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
| | - Sunwoo Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (W.P.); (S.P.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.); Fax: +82-2-3290-4994 (G.S.)
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Korea
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3012 (G.S.); +82-2-910-4773 (W.L.); Fax: +82-2-3290-4994 (G.S.)
| |
Collapse
|