1
|
Ohno M, Higuchi Y, Yamai K, Fuchigami S, Sasaki T, Oda Y, Hayashi I. Structural analysis of microtubule binding by minus-end targeting protein Spiral2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119858. [PMID: 39370045 DOI: 10.1016/j.bbamcr.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Microtubules (MTs) are dynamic cytoskeletal polymers that play a critical role in determining cell polarity and shape. In plant cells, acentrosomal MTs are localized on the cell surface and are referred to as cortical MTs. Cortical MTs nucleate in the cell cortex and detach from nucleation sites. The released MT filaments perform treadmilling, with the plus-ends of MTs polymerizing and the minus-ends depolymerizing. Minus-end targeting proteins, -TIPs, include Spiral2, which regulates the minus-end dynamics of acentrosomal MTs. Spiral2 accumulates autonomously at MT minus-ends and inhibits filament shrinkage, but the mechanism by which Spiral2 specifically recognizes minus-ends of MTs remains unknown. Here we describe the crystal structure of Spiral2's N-terminal MT-binding domain. The structural properties of this domain resemble those of the HEAT repeat structure of the tumor overexpressed gene (TOG) domain, but the number of HEAT repeats is different and the conformation is highly arched. Gel filtration and co-sedimentation analyses demonstrate that the domain binds preferentially to MT filaments rather than the tubulin dimer, and that the tubulin-binding mode of Spiral2 via the basic surface is similar to that of the TOG domain. We constructed an in silico model of the Spiral2-tubulin complex to identify residues that potentially recognize tubulin. Mutational analysis revealed that the key residues inferred in the model are involved in microtubule recognition, and provide insight into the mechanism by which end-targeting proteins stabilize MT ends.
Collapse
Affiliation(s)
- Marina Ohno
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Higuchi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kazune Yamai
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, Japan
| | - Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
2
|
Yagi N, Fujita S, Nakamura M. Plant microtubule nucleating apparatus and its potential signaling pathway. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102624. [PMID: 39232346 DOI: 10.1016/j.pbi.2024.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Plant cell cortical microtubules are located beneath the plasma membrane and direct the location of cellulose synthases during interphase, influencing cell morphology. Microtubule-associated proteins (MAPs) regulate these microtubules in response to growth and environmental stimuli. This review focuses on recent advances in understanding microtubule nucleation mechanisms in plants and the spatiotemporal regulation of cortical arrays via phytohormone signaling. Emphasis is placed on the conserved nature of the gamma-tubulin ring complex (γTuRC) and plant-specific components. The discussion includes the role of the Augmin complex and the distinct function of the Msd1-Wdr8 complex in plants. We also explore the effects of hormone signaling, particularly brassinosteroids, on the microtubule regulatory apparatus. The interplay between hormone signaling pathways and microtubule dynamics, including phosphorylation events and post-translational modifications, is also addressed. Finally, the impact of environmental signals and the role of protein post-translational modifications in regulating microtubule organization are suggested for future research.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 Chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Institute of Advanced Research, Nagoya University, Nagoya, 464-0814, Japan.
| |
Collapse
|
3
|
Izumi M, Nakamura S, Otomo K, Ishida H, Hidema J, Nemoto T, Hagihara S. Autophagosome development and chloroplast segmentation occur synchronously for piecemeal degradation of chloroplasts. eLife 2024; 12:RP93232. [PMID: 39509463 PMCID: PMC11542923 DOI: 10.7554/elife.93232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| | - Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
- Research Institute for Electronic Science, Hokkaido UniversitySapporoJapan
- Graduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Hiroyuki Ishida
- Graduate School of Agricultural Science, Tohoku UniversitySendaiJapan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural SciencesOkazakiJapan
- National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
- The Graduate University for Advanced Studies, SOKENDAIOkazakiJapan
- Research Institute for Electronic Science, Hokkaido UniversitySapporoJapan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKENWakoJapan
| |
Collapse
|
4
|
Schmidt-Marcec S, Parish A, Smertenko T, Hickey M, Piette BMAG, Smertenko A. The microtubule-nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture. THE PLANT CELL 2024; 36:1072-1097. [PMID: 38079222 PMCID: PMC11181950 DOI: 10.1093/plcell/koad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 04/02/2024]
Abstract
The plant cytokinetic microtubule array, called the phragmoplast, exhibits higher microtubule dynamics in its center (midzone) than at the periphery (distal zone). This behavior is known as the axial asymmetry. Despite being a major characteristic of the phragmoplast, little is known about regulators of this phenomenon. Here we address the role of microtubule nucleation in axial asymmetry by characterizing MACERATOR (MACET) proteins in Arabidopsis thaliana and Nicotiana benthamiana with a combination of genetic, biochemical, and live-cell imaging assays, using photo-convertible microtubule probes, and modeling. MACET paralogs accumulate at the shrinking microtubule ends and decrease the tubulin OFF rate. Loss of MACET4 and MACET5 function abrogates axial asymmetry by suppressing microtubule dynamicity in the midzone. MACET4 also narrows the microtubule nucleation angle at the phragmoplast leading edge and functions as a microtubule tethering factor for AUGMIN COMPLEX SUBUNIT 7 (AUG7). The macet4 macet5 double mutant shows diminished clustering of AUG7 in the phragmoplast distal zone. Knockout of AUG7 does not affect MACET4 localization, axial asymmetry, or microtubule nucleation angle, but increases phragmoplast length and slows down phragmoplast expansion. The mce4-1 mce5 aug7-1 triple knockout is not viable. Experimental data and modeling demonstrate that microtubule nucleation factors regulate phragmoplast architecture and axial asymmetry directly by generating new microtubules and indirectly by modulating the abundance of free tubulin.
Collapse
Affiliation(s)
- Sharol Schmidt-Marcec
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Alyssa Parish
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Matthew Hickey
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
5
|
Liu X, Yu F. New insights into the functions and regulations of MAP215/MOR1 and katanin, two conserved microtubule-associated proteins in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2171360. [PMID: 36720201 PMCID: PMC9891169 DOI: 10.1080/15592324.2023.2171360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.
Collapse
Affiliation(s)
- Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Soni N, Bacete L. The interplay between cell wall integrity and cell cycle progression in plants. PLANT MOLECULAR BIOLOGY 2023; 113:367-382. [PMID: 38091166 PMCID: PMC10730644 DOI: 10.1007/s11103-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Nancy Soni
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Laura Bacete
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Tsutsumi M, Takahashi T, Kobayashi K, Nemoto T. Fluorescence radial fluctuation enables two-photon super-resolution microscopy. Front Cell Neurosci 2023; 17:1243633. [PMID: 37881492 PMCID: PMC10595032 DOI: 10.3389/fncel.2023.1243633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Despite recent improvements in microscopy, it is still difficult to apply super-resolution microscopy for deep imaging due to the deterioration of light convergence properties in thick specimens. As a strategy to avoid such optical limitations for deep super-resolution imaging, we focused on super-resolution radial fluctuation (SRRF), a super-resolution technique based on image analysis. In this study, we applied SRRF to two-photon microscopy (2P-SRRF) and characterized its spatial resolution, suitability for deep observation, and morphological reproducibility in real brain tissue. By the comparison with structured illumination microscopy (SIM), it was confirmed that 2P-SRRF exhibited two-point resolution and morphological reproducibility comparable to that of SIM. The improvement in spatial resolution was also demonstrated at depths of more than several hundred micrometers in a brain-mimetic environment. After optimizing SRRF processing parameters, we successfully demonstrated in vivo high-resolution imaging of the fifth layer of the cerebral cortex using 2P-SRRF. This is the first report on the application of SRRF to in vivo two-photon imaging. This method can be easily applied to existing two-photon microscopes and can expand the visualization range of super-resolution imaging studies.
Collapse
Affiliation(s)
- Motosuke Tsutsumi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kentaro Kobayashi
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Dahiya P, Bürstenbinder K. The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102366. [PMID: 37068357 DOI: 10.1016/j.pbi.2023.102366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/10/2023]
Abstract
The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Collapse
Affiliation(s)
- Pradeep Dahiya
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany
| | - Katharina Bürstenbinder
- Leibniz Institute of Plant Biochemistry, Dept. of Molecular Signal Processing, 06120 Halle/Saale, Germany.
| |
Collapse
|
9
|
Bellinger MA, Uyehara AN, Allsman L, Martinez P, McCarthy MC, Rasmussen CG. Cortical microtubules contribute to division plane positioning during telophase in maize. THE PLANT CELL 2023; 35:1496-1512. [PMID: 36753568 PMCID: PMC10118269 DOI: 10.1093/plcell/koad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cell divisions are accurately positioned to generate cells of the correct size and shape. In plant cells, the new cell wall is built in the middle of the cell by vesicles trafficked along an antiparallel microtubule and a microfilament array called the phragmoplast. The phragmoplast expands toward a specific location at the cell cortex called the division site, but how it accurately reaches the division site is unclear. We observed microtubule arrays that accumulate at the cell cortex during the telophase transition in maize (Zea mays) leaf epidermal cells. Before the phragmoplast reaches the cell cortex, these cortical-telophase microtubules transiently interact with the division site. Increased microtubule plus end capture and pausing occur when microtubules contact the division site-localized protein TANGLED1 or other closely associated proteins. Microtubule capture and pausing align the cortical microtubules perpendicular to the division site during telophase. Once the phragmoplast reaches the cell cortex, cortical-telophase microtubules are incorporated into the phragmoplast primarily by parallel bundling. The addition of microtubules into the phragmoplast promotes fine-tuning of the positioning at the division site. Our hypothesis is that division site-localized proteins such as TANGLED1 organize cortical microtubules during telophase to mediate phragmoplast positioning at the final division plane.
Collapse
Affiliation(s)
- Marschal A Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lindy Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Pablo Martinez
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| | | | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Biochemistry Graduate Group, University of California, Riverside, CA 92508, USA
| |
Collapse
|
10
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
11
|
Ren H, Rao J, Tang M, Li Y, Dang X, Lin D. PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1514-1530. [PMID: 35587570 DOI: 10.1111/jipb.13281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Collapse
Affiliation(s)
- Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiu Rao
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Tang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Sciences and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
Chen Y, Liu X, Zhang W, Li J, Liu H, Yang L, Lei P, Zhang H, Yu F. MOR1/MAP215 acts synergistically with katanin to control cell division and anisotropic cell elongation in Arabidopsis. THE PLANT CELL 2022; 34:3006-3027. [PMID: 35579372 PMCID: PMC9373954 DOI: 10.1093/plcell/koac147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 05/20/2023]
Abstract
The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.
Collapse
Affiliation(s)
| | | | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- Author for correspondence:
| |
Collapse
|
13
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
15
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Nakamura M, Yagi N, Hashimoto T. Finding a right place to cut: How katanin is targeted to cellular severing sites. QUANTITATIVE PLANT BIOLOGY 2022; 3:e8. [PMID: 37077970 PMCID: PMC10095862 DOI: 10.1017/qpb.2022.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
Microtubule severing by katanin plays key roles in generating various array patterns of dynamic microtubules, while also responding to developmental and environmental stimuli. Quantitative imaging and molecular genetic analyses have uncovered that dysfunction of microtubule severing in plant cells leads to defects in anisotropic growth, division and other cell processes. Katanin is targeted to several subcellular severing sites. Intersections of two crossing cortical microtubules attract katanin, possibly by using local lattice deformation as a landmark. Cortical microtubule nucleation sites on preexisting microtubules are targeted for katanin-mediated severing. An evolutionary conserved microtubule anchoring complex not only stabilises the nucleated site, but also subsequently recruits katanin for timely release of a daughter microtubule. During cytokinesis, phragmoplast microtubules are severed at distal zones by katanin, which is tethered there by plant-specific microtubule-associated proteins. Recruitment and activation of katanin are essential for maintenance and reorganisation of plant microtubule arrays.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takashi Hashimoto
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| |
Collapse
|
17
|
A Quantitative Method for Evaluating Phragmoplast Morphology. Methods Mol Biol 2021. [PMID: 34705242 DOI: 10.1007/978-1-0716-1744-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phragmoplasts are plant-specific microtubule structures that form cell plates at the cell division plane. During late anaphase, phragmoplasts emerge between daughter nuclei as the derivative of spindle microtubules, and centrifugally expand toward the cell cortex to build cell plates during telophase. Phragmoplasts are composed of short antiparallel microtubules decorated with various microtubule-associated proteins. Mutants of these microtubule-associated proteins exhibit defects in phragmoplast morphology. Quantification of phragmoplast morphology is indispensable for assessing the phenotypes of these mutants. Here, we describe a method to quantify the width of phragmoplasts.
Collapse
|
18
|
An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nat Commun 2021; 12:3687. [PMID: 34140499 PMCID: PMC8211667 DOI: 10.1038/s41467-021-24067-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Microtubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity.
Collapse
|
19
|
Nakamura S, Hagihara S, Otomo K, Ishida H, Hidema J, Nemoto T, Izumi M. Autophagy Contributes to the Quality Control of Leaf Mitochondria. PLANT & CELL PHYSIOLOGY 2021; 62:229-247. [PMID: 33355344 PMCID: PMC8112837 DOI: 10.1093/pcp/pcaa162] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Sendai, 980-0845, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLs), National Institute of Natural Sciences, Okazaki, 444-8787 Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Study (SOKENDAI), Hayama, 240-0193 Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020 Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science (CSRS), RIKEN, Wako, 351-0198 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 322-0012 Japan
| |
Collapse
|
20
|
Serra L, Robinson S. Plant cell divisions: variations from the shortest symmetric path. Biochem Soc Trans 2020; 48:2743-2752. [PMID: 33336690 PMCID: PMC7752081 DOI: 10.1042/bst20200529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
In plants, the spatial arrangement of cells within tissues and organs is a direct consequence of the positioning of the new cell walls during cell division. Since the nineteenth century, scientists have proposed rules to explain the orientation of plant cell divisions. Most of these rules predict the new wall will follow the shortest path passing through the cell centroid halving the cell into two equal volumes. However, in some developmental contexts, divisions deviate significantly from this rule. In these situations, mechanical stress, hormonal signalling, or cell polarity have been described to influence the division path. Here we discuss the mechanism and subcellular structure required to define the cell division placement then we provide an overview of the situations where division deviates from the shortest symmetric path.
Collapse
Affiliation(s)
- Léo Serra
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| | - Sarah Robinson
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| |
Collapse
|
21
|
Ovečka M, Luptovčiak I, Komis G, Šamajová O, Samakovli D, Šamaj J. Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:734. [PMID: 32582258 PMCID: PMC7296145 DOI: 10.3389/fpls.2020.00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 05/04/2023]
Abstract
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
Collapse
|
22
|
Wasteneys GO. Plant Cell Biology: Shifting CORDs to Fine-Tune Phragmoplast Microtubule Turnover. Curr Biol 2019; 29:R1235-R1238. [PMID: 31794755 DOI: 10.1016/j.cub.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new study provides insight into microtubule turnover during plant cell division. Using clever molecular-genetic and imaging strategies, the authors demonstrate that the recently discovered CORD4 and 5 proteins associate with phragmoplast microtubules and control recruitment and activity of the microtubule-severing protein katanin.
Collapse
|