1
|
Subramanian P, Kim D, Ko HR, Sim JS, Mani V, Lee CM, Lee SK, Park S, Kim DG, Yu Y, Hahn BS. Genomic and Transcriptomic Analysis of the Polyploidy Cyst Nematode, Heterodera trifolii, and Heterodera schachtii. Int J Mol Sci 2025; 26:948. [PMID: 39940717 PMCID: PMC11817004 DOI: 10.3390/ijms26030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Cyst nematodes remain a major threat to global agricultural production, causing huge losses. To understand the parasitism of the cyst nematodes Heterodera trifolii (HT) and Heterodera schachtii (HS), we constructed whole-genome assemblies using short- and long-read sequencing technologies. The nematode genomes were 379 Mb and 183 Mb in size, with the integrated gene models predicting 40,186 and 18,227 genes in HT and HS, respectively. We found more than half of the genes predicted in HT (64.7%) and HS (53.2%) were collinear to their nearest neighbor H. glycines (HG). Large-scale duplication patterns in HT and segmental duplications of more than half of the orthologous genes indicate that the genome of HT is polyploid in nature. Functional analysis of the genes indicated that 65.6% of the HG genes existed within the HT genome. Most abundant genes in HT and HS were involved in gene regulation, DNA integration, and chemotaxis. Differentially expressed genes showed upregulation of cuticle structural constituent genes during egg and female stages and cytoskeletal motor activity-related genes in juvenile stage 2 (J2). Horizontal gene transfer analyses identified four new vitamin biosynthesis genes, pdxK, pdxH, pdxS, and fabG, of bacterial origin, to be first reported in HT and HS. Mitogenomes of HT, HS, and HG showed similar structure, composition, and codon usage. However, rates of substitution of bases in the gene nad4l were significantly different between HT and HS. The described genomes, transcriptomes, and mitogenomes of plant-parasitic nematodes HT and HS are potential bio-resources used to identify several strategies of control of the nematode.
Collapse
Affiliation(s)
- Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Daegwan Kim
- Department of Research and Development, DNACARE Co., Ltd., Seoul 06126, Republic of Korea; (D.K.); (Y.Y.)
| | - Hyoung-Rai Ko
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Joon-Soo Sim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.-S.S.); (V.M.); (C.-M.L.); (S.-K.L.); (S.P.)
| | - Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.-S.S.); (V.M.); (C.-M.L.); (S.-K.L.); (S.P.)
| | - Chang-Muk Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.-S.S.); (V.M.); (C.-M.L.); (S.-K.L.); (S.P.)
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.-S.S.); (V.M.); (C.-M.L.); (S.-K.L.); (S.P.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.-S.S.); (V.M.); (C.-M.L.); (S.-K.L.); (S.P.)
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea;
- Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Yeisoo Yu
- Department of Research and Development, DNACARE Co., Ltd., Seoul 06126, Republic of Korea; (D.K.); (Y.Y.)
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
2
|
Maciejowski WJ, Gile GH, Jerlström-Hultqvist J, Dacks JB. Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int J Parasitol 2023; 53:233-245. [PMID: 36898426 DOI: 10.1016/j.ijpara.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
The eukaryotic phylum Parabasalia is composed primarily of anaerobic, endobiotic organisms such as the veterinary parasite Tritrichomonas foetus and the human parasite Trichomonas vaginalis, the latter causing the most prevalent, non-viral, sexually transmitted disease world-wide. Although a parasitic lifestyle is generally associated with a reduction in cell biology, T. vaginalis provides a striking counter-example. The 2007 T. vaginalis genome paper reported a massive and selective expansion of encoded proteins involved in vesicle trafficking, particularly those implicated in the late secretory and endocytic systems. Chief amongst these were the hetero-tetrameric adaptor proteins or 'adaptins', with T. vaginalis encoding ∼3.5 times more such proteins than do humans. The provenance of such a complement, and how it relates to the transition from a free-living or endobiotic state to parasitism, remains unclear. In this study, we performed a comprehensive bioinformatic and molecular evolutionary investigation of the heterotetrameric cargo adaptor-derived coats, comparing the molecular complement and evolution of these proteins between T. vaginalis, T. foetus and the available diversity of endobiotic parabasalids. Notably, with the recent discovery of Anaeramoeba spp. as the free-living sister lineage to all parabasalids, we were able to delve back to time points earlier in the lineage's history than ever before. We found that, although T. vaginalis still encodes the most HTAC subunits amongst parabasalids, the duplications giving rise to the complement took place more deeply and at various stages across the lineage. While some duplications appear to have convergently shaped the parasitic lineages, the largest jump is in the transition from free-living to endobiotic lifestyle with both gains and losses shaping the encoded complement. This work details the evolution of a cellular system across an important lineage of parasites and provides insight into the evolutionary dynamics of an example of expansion of protein machinery, counter to the more common trends observed in many parasitic systems.
Collapse
Affiliation(s)
- William J Maciejowski
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, USA
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 586, Uppsala Universitet, SE-751 24 Uppsala, Sweden. https://twitter.com/jon_hultqvist
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
3
|
Bubrig LT, Fierst JL. REVIEW OF THE DAUER HYPOTHESIS: WHAT NON-PARASITIC SPECIES CAN TELL US ABOUT THE EVOLUTION OF PARASITISM. J Parasitol 2021; 107:717-725. [PMID: 34525204 DOI: 10.1645/21-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Parasitic lineages have acquired suites of new traits compared to their nearest free-living relatives. When and why did these traits arise? We can envision lineages evolving through multiple stable intermediate steps such as a series of increasingly exploitative species interactions. This view allows us to use non-parasitic species that approximate those intermediate steps to uncover the timing and original function of parasitic traits, knowledge critical to understanding the evolution of parasitism. The dauer hypothesis proposes that free-living nematode lineages evolved into parasites through two intermediate steps, phoresy and necromeny. Here we delve into the proposed steps of the dauer hypothesis by collecting and organizing data from genetic, behavioral, and ecological studies in a range of nematode species. We argue that hypotheses on the evolution of parasites will be strengthened by complementing comparative genomic studies with ecological studies on non-parasites that approximate intermediate steps.
Collapse
Affiliation(s)
- Louis T Bubrig
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, Virginia 22904
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, Alabama 35487-0344
| |
Collapse
|