1
|
Li Y, Xing YM, Murat C, Kohler A, Zhou DY, Yu FQ, Chen J. Transcriptome and metabolome analysis reveals stage-specific metabolite accumulation during maturity of Chinese black truffle Tuber indicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108158. [PMID: 37948976 DOI: 10.1016/j.plaphy.2023.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Tuber indicum is the most economically important member of Tuber, with the highest production and widest distribution in China. However, the overexploitation of immature ascocarps not only has driven wild resources of the species toward extinction, but also has caused enconomic losses and a decline in the reputation of T.indicum quality. In this study, stage-specific metabolites of T. indicum in relation to nutritional quality and the mechanism of their accumulations were explored by transcriptome and metabolome analysis at five harvest times, representing four maturation stages. A total of 663 compounds were identified in T. indicum ascocarps by a widely targeted metabolomic approach. Lipid compounds are the most prominent metabolites (18%) in our samples and also are higher accumulation at the immature stage than at mature stage, representing 30.16% differential accumulated metabolites in this stage. Levels of some of the amino acids, such as S-(methyl) glutathione, S-adenosylmethionine, which are known truffle aroma precursors, were increased at the mature stage. The gene expression level related to the biosynthesis of volatile organic compounds were verified by qPCR. This study contributes to the preliminary understanding of metabolites variations in T. indicum ascocarps during maturity for quality evaluation and truffle biology.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yong-Mei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France.
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France.
| | - Dong-Yu Zhou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fu-Qiang Yu
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Yunnan, China.
| | - Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Taschen E, Callot G, Savary P, Sauve M, Penuelas-Samaniego Y, Rousset F, Parlade X, Selosse MA, Richard F. Efficiency of the traditional practice of traps to stimulate black truffle production, and its ecological mechanisms. Sci Rep 2022; 12:16201. [PMID: 36171390 PMCID: PMC9519532 DOI: 10.1038/s41598-022-19962-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
The black truffle Tuber melanosporum was disseminated all over the world, propelled by the development of a wide variety of empirical practices. A widespread practice, called ‘truffle trap’, consists of placing pieces of truffles into excavations dug under host trees, and of collecting truffle in these traps in the next years. This research aims at (1) evaluating the effect of this practice on fruitbody production based on the analysis of 9924 truffle traps installed in 11 orchards across T. melanosporum native area in France and (2) exploring the mechanisms involved in fruitbody emergence using traps where the genotypes of introduced truffles were compared with those of fruitbodies collected in the same traps. We confirmed that truffle traps provide a major and highly variable part of truffle ground production, representing up to 89% of the collected fruitbodies. We evidenced a genetic link between introduced spores and collected fruitbodies, and then demonstrated that truffle growers provide paternal partners for mating with local maternal mycelia. We also highlighted that soil disturbance stimulate the vegetative development of established maternal mycelia. This research supports that a widely used traditional practice enhances fruitbody production by shaping favorable conditions and providing sexual partners required for fruiting.
Collapse
Affiliation(s)
- E Taschen
- Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - G Callot
- Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.,, 26 chemin des olivettes, 34980, Montferrier sur Lez, France
| | - P Savary
- , Rue des Champs, La Remisière, 17480, Le Château d'Oléron, France.,CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - M Sauve
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - Y Penuelas-Samaniego
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - F Rousset
- ISEM CNRS UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, CC 065, Place Eugène Bataillon, 34095, Montpellier, France
| | - X Parlade
- Mycorrhizas-Sustainable Plant Protection, IRTA, Ctra. de Cabrils, 08348, Cabrils (Barcelona), Spain
| | - M-A Selosse
- UMR 7205 ISYEB, Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, CP 50, 45 rue Buffon, 75005, Paris, France.,Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - F Richard
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
3
|
Losso K, Wörz H, Kappacher C, Huber S, Jakschitz T, Rainer M, Bonn GK. Rapid quality control of black truffles using Direct Analysis in Real Time Mass Spectrometry and Hydrophilic Interaction Liquid Chromatography Mass Spectrometry. Food Chem 2022; 403:134418. [DOI: 10.1016/j.foodchem.2022.134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
4
|
Life Cycle and Phylogeography of True Truffles. Genes (Basel) 2022; 13:genes13010145. [PMID: 35052485 PMCID: PMC8775154 DOI: 10.3390/genes13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
True truffle (Tuber spp.) is one group of ascomycetes with great economic importance. During the last 30 years, numerous fine-scale population genetics studies were conducted on different truffle species, aiming to answer several key questions regarding their life cycles; these questions are important for their cultivation. It is now evident that truffles are heterothallic, but with a prevalent haploid lifestyle. Strains forming ectomycorrhizas and germinating ascospores act as maternal and paternal partners respectively. At the same time, a number of large-scale studies were carried out, highlighting the influences of the last glaciation and river isolations on the genetic structure of truffles. A retreat to southern refugia during glaciation, and a northward expansion post glaciation, were revealed in all studied European truffles. The Mediterranean Sea, acting as a barrier, has led to the existence of several refugia in different peninsulas for a single species. Similarly, large rivers in southwestern China act as physical barriers to gene flow for truffles in this region. Further studies can pay special attention to population genetics of species with a wide distribution range, such as T. himalayense, and the correlation between truffle genetic structure and the community composition of truffle-associated bacteria.
Collapse
|
5
|
Chen J, De la Varga H, Todesco F, Beacco P, Martino E, Le Tacon F, Murat C. Frequency of the two mating types in the soil under productive and non-productive trees in five French orchards of the Périgord black truffle (Tuber melanosporum Vittad.). MYCORRHIZA 2021; 31:361-369. [PMID: 33512580 DOI: 10.1007/s00572-020-01011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The Périgord black truffle (Tuber melanosporum Vittad.) is an ectomycorrhizal fungus forming edible fructifications. The production of T. melanosporum relies mainly on man-made plantations. T. melanosporum is a heterothallic species requiring the meeting of two partners of opposite mating types to fruit. It is common to have productive and non-productive trees in the same orchard. The aim of our study was to assess the distribution of T. melanosporum mating types in soil under productive and non-productive trees to test whether the presence or absence of one or two mating types could be an indicator of productivity. To achieve this aim, five orchards were selected in various French regions. Soils were harvested under productive and non-productive Quercus pubescens; soil characteristics and the distribution of the mating types in the soil were investigated. No significant differences between productive and non-productive soils according to soil parameters were detected. The total content of T. melanosporum DNA in the soil was significantly higher under productive trees compared with non-productive trees, and it was positively correlated only with soil available phosphorous. Under productive trees, it was more frequent to find both mating types than under non-productive trees. Soils with only one mating type were more frequent under non-productive trees than under productive ones. Moreover, no mating type was detected in the soil of 22% of the non-productive trees. These results suggest that the detection of T. melanosporum mating types in soil could be a tool to optimise the management of truffle orchards (e.g. by spore inoculation).
Collapse
Affiliation(s)
- Juan Chen
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Herminia De la Varga
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- R+D+I Department, FERTINAGRO BIOTECH, S.L, 74, Calle Los Enebros, 44002, Teruel, Spain
| | - Flora Todesco
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- WETRUF SAS, 2, avenue de la Forêt de Haye, 54500, Vandoeuvre-lès-Nancy, France
| | - Pauline Beacco
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Elena Martino
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - François Le Tacon
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France.
| |
Collapse
|
6
|
Genotypic diversity of the Asiatic black truffle, Tuber himalayense, collected in spontaneous and highly productive truffle grounds. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01642-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|