1
|
Gong S, Liang J, Li G, Xu L, Tan Y, Zheng X, Jin X, Yu K, Xia X. Linking coral fluorescence phenotypes to thermal bleaching in the reef-building Galaxea fascicularis from the northern South China Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:155-167. [PMID: 38433965 PMCID: PMC10902222 DOI: 10.1007/s42995-023-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 03/05/2024]
Abstract
Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00190-1.
Collapse
Affiliation(s)
- Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530 China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Xuejie Jin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, 53004 China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
| |
Collapse
|
2
|
Kholssi R, Lougraimzi H, Moreno-Garrido I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105877. [PMID: 36640723 DOI: 10.1016/j.marenvres.2023.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Global climate change (GCC) constitutes a complex challenge posing a serious threat to biodiversity and ecosystems in the next decades. There are several recent studies dealing with the potential effect of increased temperature, decrease of pH or shifts in salinity, as well as cascading events of GCC and their impact on human-environment systems. Microalgae as primary producers are a sensitive compartment of the marine ecosystems to all those changes. However, the potential consequences of these changes for marine microalgae have received relatively little attention and they are still not well understood. Thus, there is an urgent need to explore and understand the effects generated by multiple climatic changes on marine microalgae growth and biodiversity. Therefore, this review aimed to compare and contrast mechanisms that marine microalgae exhibit to directly respond to harsh conditions associated with GCC and the potential consequences of those changes in marine microalgal populations. Literature shows that microalgae responses to environmental stressors such as temperature were affected differently. A stress caused by salinity might slow down cell division, reduces size, ceases motility, and triggers palmelloid formation in microalgae community, but some of these changes are strongly species-specific. UV irradiance can potentially lead to an oxidative stress in microalgae, promoting the production of reactive oxygen species (ROS) or induce direct physical damage on microalgae, then inhibiting the growth of microalgae. Moreover, pH could impact many groups of microalgae being more tolerant of certain pH shifts, while others were sensitive to changes of just small units (such as coccolithophorids) and subsequently affect the species at a higher trophic level, but also total vertical carbon transport in oceans. Overall, this review highlights the importance of examining effects of multiple stressors, considering multiple responses to understand the complexity behind stressor interactions.
Collapse
Affiliation(s)
- Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain; Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Hanane Lougraimzi
- Laboratory of Plant, Animal and Agro-Industry Productions, Faculty of Sciences, Ibn Tofail University, BP: 242, 14000, Kenitra, Morocco
| | - Ignacio Moreno-Garrido
- Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Alderdice R, Perna G, Cárdenas A, Hume BCC, Wolf M, Kühl M, Pernice M, Suggett DJ, Voolstra CR. Deoxygenation lowers the thermal threshold of coral bleaching. Sci Rep 2022; 12:18273. [PMID: 36316371 PMCID: PMC9622859 DOI: 10.1038/s41598-022-22604-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit of an Acropora coral by as much as 1 °C or 0.4 °C based on bleaching index scores or dark-acclimated photosynthetic efficiencies, respectively. Using RNA-Seq, we show similar stress responses to heat with and without deoxygenated seawater, both activating putative key genes of the hypoxia-inducible factor response system indicative of cellular hypoxia. We also detect distinct deoxygenation responses, including a disruption of O2-dependent photo-reception/-protection, redox status, and activation of an immune response prior to the onset of bleaching. Thus, corals are even more vulnerable when faced with heat stress in deoxygenated waters. This highlights the need to integrate dissolved O2 measurements into global monitoring programs of coral reefs.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Gabriela Perna
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Martin Wolf
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|