1
|
Brown TM, Wilhelm SI, Mastromonaco GF, Burness G. A path forward in the investigation of seabird strandings attributed to light attraction. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Taylor Marie Brown
- Environmental and Life Sciences Graduate Program Trent University Peterborough Ontario Canada
| | - Sabina I. Wilhelm
- Environment and Climate Change Canada Mount Pearl Newfoundland Canada
| | | | - Gary Burness
- Department of Biology Trent University Peterborough Ontario Canada
| |
Collapse
|
2
|
Integration and evaluation of magnetic stimulation in physiology setups. PLoS One 2022; 17:e0271765. [PMID: 35867646 PMCID: PMC9307166 DOI: 10.1371/journal.pone.0271765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
A large number of behavioral experiments have demonstrated the existence of a magnetic sense in many animal species. Further, studies with immediate gene expression markers have identified putative brain regions involved in magnetic information processing. In contrast, very little is known about the physiology of the magnetic sense and how the magnetic field is neuronally encoded. In vivo electrophysiological studies reporting neuronal correlates of the magnetic sense either have turned out to be irreproducible for lack of appropriate artifact controls or still await independent replication. Thus far, the research field of magnetoreception has little exploited the power of ex vivo physiological studies, which hold great promise for enabling stringent controls. However, tight space constraints in a recording setup and the presence of magnetizable materials in setup components and microscope objectives make it demanding to generate well-defined magnetic stimuli at the location of the biological specimen. Here, we present a solution based on a miniature vector magnetometer, a coil driver, and a calibration routine for the coil system to compensate for magnetic distortions in the setup. The magnetometer fits in common physiology recording chambers and has a sufficiently small spatial integration area to allow for probing spatial inhomogeneities. The coil-driver allows for the generation of defined non-stationary fast changing magnetic stimuli. Our ex vivo multielectrode array recordings from avian retinal ganglion cells show that artifacts induced by rapid magnetic stimulus changes can mimic the waveform of biological spikes on single electrodes. However, induction artifacts can be separated clearly from biological responses if the spatio-temporal characteristics of the artifact on multiple electrodes is taken into account. We provide the complete hardware design data and software resources for the integrated magnetic stimulation system.
Collapse
|
3
|
Zein B, Long JA, Safi K, Kölzsch A, Benitez-Paez F, Wikelski M, Kruckenberg H, Demšar U. Simulating geomagnetic bird navigation using novel high-resolution geomagnetic data. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Quintana F, Gómez-Laich A, Gunner RM, Gabelli F, Omo GD, Duarte C, Brogger M, Wilson RP. Long walk home: Magellanic penguins have strategies that lead them to areas where they can navigate most efficiently. Proc Biol Sci 2022; 289:20220535. [PMID: 35703051 PMCID: PMC9198806 DOI: 10.1098/rspb.2022.0535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding how animals move in dense environments where vision is compromised is a major challenge. We used GPS and dead-reckoning to examine the movement of Magellanic penguins commuting through vegetation that precluded long-distance vision. Birds leaving the nest followed the shortest, quickest route to the sea (the 'ideal path', or 'I-path') but return tracks depended where the birds left the water. Penguins arriving at the beach departure spot mirrored the departure. Most of those landing at a distance from the departure spot travelled slowly, obliquely to the coast at a more acute angle than a beeline trajectory to the nest. On crossing their I-path, these birds then followed this route quickly to their nests. This movement strategy saves birds distance, time and energy compared to a route along the beach and the into the colony on the I-track and saves time and energy compared to a beeline trajectory which necessitates slow travel in unfamiliar areas. This suggests that some animals adopt tactics that take them to an area where their navigational capacities are enhanced for efficient travel in challenging environments.
Collapse
Affiliation(s)
- Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Richard M. Gunner
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Fabián Gabelli
- Cátedra de Biología del Comportamiento, Facultad de Psicología, Universidad de Buenos Aires, Av. Hipólito Yrigoyen 3242, C1207ABR Buenos Aires, Argentina
| | | | - Carlos Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Martín Brogger
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| |
Collapse
|
5
|
Beltran RS, Yuen AL, Condit R, Robinson PW, Czapanskiy MF, Crocker DE, Costa DP. Elephant seals time their long-distance migrations using a map sense. Curr Biol 2022; 32:R156-R157. [DOI: 10.1016/j.cub.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Putman NF. Magnetosensation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:1-7. [PMID: 35098367 DOI: 10.1007/s00359-021-01538-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
7
|
Keller BA, Putman NF, Grubbs RD, Portnoy DS, Murphy TP. Map-like use of Earth's magnetic field in sharks. Curr Biol 2021; 31:2881-2886.e3. [PMID: 33961785 DOI: 10.1016/j.cub.2021.03.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Migration is common in marine animals,1-5 and use of the map-like information of Earth's magnetic field appears to play an important role.2,6-9 While sharks are iconic migrants10-12 and well known for their sensitivity to electromagnetic fields,13-20 whether this ability is used for navigation is unresolved.14,17,21,22 We conducted magnetic displacement experiments on wild-caught bonnetheads (Sphyrna tiburo) and show that magnetic map cues can elicit homeward orientation. We further show that use of a magnetic map to derive positional information may help explain aspects of the genetic structure of bonnethead populations in the northwest Atlantic.23-26 These results offer a compelling explanation for the puzzle of how migratory routes and population structure are maintained in marine environments, where few physical barriers limit movements of vagile species. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Bryan A Keller
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA.
| | - Nathan F Putman
- LGL Ecological Research Associates, 4103 South Texas Avenue, Suite 211, Bryan, TX 77802, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA
| | - David S Portnoy
- Marine Genomics Laboratory, Texas A&M University, Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Timothy P Murphy
- Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|