1
|
Karbstein K, Kösters L, Hodač L, Hofmann M, Hörandl E, Tomasello S, Wagner ND, Emerson BC, Albach DC, Scheu S, Bradler S, de Vries J, Irisarri I, Li H, Soltis P, Mäder P, Wäldchen J. Species delimitation 4.0: integrative taxonomy meets artificial intelligence. Trends Ecol Evol 2024; 39:771-784. [PMID: 38849221 DOI: 10.1016/j.tree.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 06/09/2024]
Abstract
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.
Collapse
Affiliation(s)
- Kevin Karbstein
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany.
| | - Lara Kösters
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Ladislav Hodač
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Martin Hofmann
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany
| | - Elvira Hörandl
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Salvatore Tomasello
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Natascha D Wagner
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Brent C Emerson
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Island Ecology and Evolution Research Group, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Dirk C Albach
- Carl von Ossietzky-Universität Oldenburg, Institute of Biology and Environmental Science, 26129 Oldenburg, Germany
| | - Stefan Scheu
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany; University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany
| | - Sven Bradler
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, 37077 Göttingen, Germany; University of Göttingen, Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, 37077 Göttingen, Germany
| | - Iker Irisarri
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Phylogenomics Section, Museum of Nature, 20146 Hamburg, Germany
| | - He Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Chenshan Botanical Garden, 201602 Shanghai, China
| | - Pamela Soltis
- University of Florida, Florida Museum of Natural History, 32611 Gainesville, USA
| | - Patrick Mäder
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Ecology and Evolution, Philosophenweg 16, 07743 Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Arick MA, Grover CE, Hsu CY, Magbanua Z, Pechanova O, Miller ER, Thrash A, Youngblood RC, Ezzell L, Alam MS, Benzie JAH, Hamilton MG, Karsi A, Lawrence ML, Peterson DG. A high-quality chromosome-level genome assembly of rohu carp, Labeo rohita, and its utilization in SNP-based exploration of gene flow and sex determination. G3 (BETHESDA, MD.) 2023; 13:6987299. [PMID: 36639248 PMCID: PMC9997561 DOI: 10.1093/g3journal/jkad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Labeo rohita (rohu) is a carp important to aquaculture in South Asia, with a production volume close to Atlantic salmon. While genetic improvements to rohu are ongoing, the genomic methods commonly used in other aquaculture improvement programs have historically been precluded in rohu, partially due to the lack of a high-quality reference genome. Here we present a high-quality de novo genome produced using a combination of next-generation sequencing technologies, resulting in a 946 Mb genome consisting of 25 chromosomes and 2,844 unplaced scaffolds. Notably, while approximately half the size of the existing genome sequence, our genome represents 97.9% of the genome size newly estimated here using flow cytometry. Sequencing from 120 individuals was used in conjunction with this genome to predict the population structure, diversity, and divergence in three major rivers (Jamuna, Padma, and Halda), in addition to infer a likely sex determination mechism in rohu. These results demonstrate the utility of the new rohu genome in modernizing some aspects of rohu genetic improvement programs.
Collapse
Affiliation(s)
- Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zenaida Magbanua
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lauren Ezzell
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Md Samsul Alam
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - John A H Benzie
- WorldFish, Jalan Batu Maung, 11960 Bayan Lepas, Penang, Malaysia
| | | | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
4
|
The evolutionary origin and domestication history of goldfish ( Carassius auratus). Proc Natl Acad Sci U S A 2020; 117:29775-29785. [PMID: 33139555 DOI: 10.1073/pnas.2005545117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.
Collapse
|