1
|
Wang X, O'Connor J, Zheng X, Wang Y, Kiat Y. Earliest evidence of avian primary feather moult. Biol Lett 2024; 20:20240106. [PMID: 38955226 DOI: 10.1098/rsbl.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jingmai O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Xiaoting Zheng
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China
| | - Yosef Kiat
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
2
|
Kiat Y, O’Connor JK. Functional constraints on the number and shape of flight feathers. Proc Natl Acad Sci U S A 2024; 121:e2306639121. [PMID: 38346196 PMCID: PMC10895369 DOI: 10.1073/pnas.2306639121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial. The evolution of powered flight in modern birds involved exaptation of feathered surfaces extending off the limbs and tail yet most studies concerning flight potential in pennaraptorans do not account for the structure and morphology of the wing feathers themselves. Analysis of the number and shape of remex and rectrix feathers across a large dataset of extant birds indicates that the number of remiges and rectrices and the degree of primary vane asymmetry strongly correlate with locomotor ability revealing important functional constraints. Among these traits, phenotypic flexibility varies reflected by the different rates at which morphological changes evolve, such that some traits reflect the ancestral condition, whereas others reflect current locomotor function. While Mesozoic birds and Microraptor have remex morphologies consistent with extant volant birds, that of anchiornithines deviate significantly providing strong evidence this clade was not volant. The results of these analyses support a single origin of dinosaurian flight and indicate the early stages of feathered wing evolution are not sampled by the currently available fossil record.
Collapse
Affiliation(s)
- Yosef Kiat
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605
| | - Jingmai K. O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605
| |
Collapse
|
3
|
Kiat Y, O'Connor JK. Rarity of molt evidence in early pennaraptoran dinosaurs suggests annual molt evolved later among Neornithes. Commun Biol 2023; 6:687. [PMID: 37400509 DOI: 10.1038/s42003-023-05048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Feathers are a primitive trait among pennaraptoran dinosaurs, which today are represented by crown birds (Neornithes), the only clade of dinosaurs to survive the end Cretaceous mass extinction. Feathers are central to many important functions and therefore, maintaining plumage function is of great importance for survival. Thus, molt - by which new feathers are formed to replace old ones, is an essential process. Our limited knowledge regarding molt in early pennaraptoran evolution is based largely on a single Microraptor specimen. A survey of 92 feathered non-avian dinosaur and stem bird fossils did not find additional molting evidence. Due to its longer duration, in ornithological collections evidence of molt is found more frequently in extant bird species with sequential molts compared to those with more rapid simultaneous molts. The low frequency of molt occurrence among fossil specimens resembles collections of bird species with simultaneous molts. The dearth of molt evidence in the forelimbs of pennaraptoran specimens may have interesting implications regarding molt strategy during early avian evolution, and suggests that the yearly molting cycle may have evolved later, among crown birds.
Collapse
Affiliation(s)
- Yosef Kiat
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL, 60605, USA.
| | - Jingmai Kathleen O'Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
4
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
5
|
Kiat Y, Slavenko A, Sapir N. Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage. Sci Rep 2021; 11:21573. [PMID: 34732791 PMCID: PMC8566465 DOI: 10.1038/s41598-021-00964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The evolutionary history of many organisms is characterized by major changes in morphology and distribution. Specifically, alterations of body mass and geographic distribution may profoundly influence organismal life-history traits. Here, we reconstructed the evolutionary history of flight-feather molt strategy using data from 1,808 Neornithes species. Our analysis suggests that the ancestral molt strategy of first-year birds was partial or entirely absent, and that complete wing flight-feather molt in first-year birds first evolved in the late Eocene and Oligocene (25-40 Ma), at least 30 Myr after birds first evolved. Complete flight-feather molt occurred mainly at equatorial latitudes and in relatively low body mass species, following a diversification of body mass within the lineage. We conclude that both body mass and geographic distribution shaped the evolution of molt strategies and propose that the evolutionary transition towards complete juvenile molt in the Neornithes is a novel, relatively late adaptation.
Collapse
Affiliation(s)
- Yosef Kiat
- grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology & Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Alex Slavenko
- grid.11835.3e0000 0004 1936 9262School of Biosciences, University of Sheffield, Sheffield, UK
| | - Nir Sapir
- grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology & Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| |
Collapse
|
6
|
Kiat Y, Pyle P, Balaban A, O'Connor JK. Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx. Commun Biol 2021; 4:837. [PMID: 34226661 PMCID: PMC8257594 DOI: 10.1038/s42003-021-02349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yosef Kiat
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa, Israel. .,The Nili & David Jerusalem Bird Observatory (JBO), Israel Ornithological Center, Society for the Protection of Nature in Israel, Jerusalem, Israel.
| | - Peter Pyle
- The Institute for Bird Populations, Petaluma, CA, USA
| | - Amir Balaban
- The Nili & David Jerusalem Bird Observatory (JBO), Israel Ornithological Center, Society for the Protection of Nature in Israel, Jerusalem, Israel
| | | |
Collapse
|
7
|
Archaeopteryx feather sheaths reveal sequential center-out flight-related molting strategy. Commun Biol 2020; 3:745. [PMID: 33293660 PMCID: PMC7722847 DOI: 10.1038/s42003-020-01467-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Modern flying birds molt to replace old and worn feathers that inhibit flight performance, but its origins are unclear. We address this by presenting and evaluating a ~150 million year old record of molting in a feathered dinosaur from the early bird Archaeopteryx. Laser-Stimulated Fluorescence revealed feather sheaths that are otherwise invisible under white light. These are separated by one feather and are not in numerical sequential order and are mirrored in both wings. This indicates that a sequential center-out molting strategy was already present at the origins of flight, which is used in living falcons to preserve maximum flight performance. This strategy would have been a welcome advantage for early theropod flyers that had poor flight capabilities. This discovery provides important insights into how birds refined their early flight capabilities before the appearance of the keeled sternum, pygostyle and triosseal canal. Thomas Kaye et al. use Laser-Stimulated Fluorescence and fossil evidence from the oldest known bird, Archaeopteryx, to document the oldest record of molting, demonstrating that a sophisticated molting strategy developed unexpectedly early on in the evolution of avian flight. This discovery provides important insights into the flight capabilities of the earliest birds and predates other major flight adaptations.
Collapse
|
8
|
Abstract
Feathers are the most complex integumentary structures in the animal world. They come in a variety of forms, the most familiar of which are remiges (flight feathers). Flight feathers are composed of a central shaft made up of a hollow calamus (quill), which is inserted into the skin, and a more distal rachis. Hundreds of parallel barbs branch from the sides of the rachis. In turn, smaller hooked barbules branch off the barbs, allowing them to interlock in a tight zipper-like fashion to form vanes. Variations in rachis, barb and barbule morphology result in other feather types such as contour feathers, bristles and down feathers. Feathers have a remarkable array of functions - they form airfoils and elaborate display structures, they serve to camouflage and insulate, to generate and help detect sound, and even to disintegrate into powder to condition other feathers.
Collapse
|