1
|
Wen Q, Yin X, Moming A, Liu G, Jiang B, Wang J, Fan Z, Sajjad W, Ge Y, Kang S, Shen S, Deng F. Viral communities locked in high elevation permafrost up to 100 m in depth on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172829. [PMID: 38692332 DOI: 10.1016/j.scitotenv.2024.172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Permafrost serves as a natural cold reservoir for viral communities. However, little is known about the viromes in deep permafrost soil, as most studies of permafrost were restricted to shallow areas. Here, permafrost soil samples of up to 100 m in depth were collected from two sites in the Tuotuo River permafrost area on the Tibetan Plateau. We investigated the viral composition in these permafrost soil samples and analyzed the relationship of viral composition and diversity along with depths. Our study revealed that greater permafrost thickness corresponds to higher diversity within the viral community. Bacteriophages were found to be the dominant viral communities, with "kill the winner" dynamics observed within the Siphoviridae and Myoviridae. The abundance and diversity of viral communities may follow a potential pattern along soil layers and depths, influenced by pH, trace elements, and permafrost thickness. Notably, strong correlations were discovered between the content of inorganic elements, including B, Mg, Cr, Bi, Ti, Na, Ni, and Cu, and the viral composition. Moreover, we discovered highly conserved sequences of giant viruses at depth of 10, 20, and 50 m in permafrost, which play a crucial role in evolutionary processes. These findings provide valuable insights into the viral community patterns from shallow to 100-m-depth in high-elevation permafrost, offering crucial data support for the formulation of strategies for permafrost thaw caused by climate change and anthropogenic activities.
Collapse
Affiliation(s)
- Qian Wen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Guanyue Liu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Boyong Jiang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
| | - Yingying Ge
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China; Hubei Jiangxia Laboratory, 430200 Wuhan, China.
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
2
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|
3
|
Bisio H, Legendre M, Giry C, Philippe N, Alempic JM, Jeudy S, Abergel C. Evolution of giant pandoravirus revealed by CRISPR/Cas9. Nat Commun 2023; 14:428. [PMID: 36702819 PMCID: PMC9879987 DOI: 10.1038/s41467-023-36145-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.
Collapse
Affiliation(s)
- Hugo Bisio
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France.
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France
| | - Claire Giry
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France
| | - Nadege Philippe
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France
| | - Jean-Marie Alempic
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France
| | - Sandra Jeudy
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Genomique & Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B), 13288, Marseille, Cedex 9, France.
| |
Collapse
|
4
|
Other large DNA viruses. Viruses 2023. [DOI: 10.1016/b978-0-323-90385-1.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
6
|
Hernández G. Schrödinger and the Possible Existence of Different Types of Life. Front Microbiol 2022; 13:902212. [PMID: 35711773 PMCID: PMC9194607 DOI: 10.3389/fmicb.2022.902212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Eighty years ago, Nobel Prize-winner physicist Erwin Schrödinger gave three lectures in Dublin’s Trinity College, titled What is Life? The physical aspect of the living cell to explain life in terms of the chemistry and physics laws. Life definitions rely on the cellular theory, which poses in the first place that life is made up of cells. The recent discovery of giant viruses, along with the development of synthetic cells at the beginning of century 21st, has challenged the current idea of what life is. Thus, rather than having arrived at a close answer to Schrödinger’s question, modern biology has touched down at a novel scenario in which several types of life—as opposed to only one—actually might exist on Earth and possibly the Universe. Eighty years after the Dublin lectures, the Schrödinger question could be: “What are lives”?
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| |
Collapse
|
7
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Söderlund-Venermo M, Varma A, Guo D, Gladue DP, Poole E, Pujol FH, Pappu H, Romalde JL, Kramer L, Baz M, Venter M, Moore MD, Nevels MM, Ezzikouri S, Vakharia VN, Wilson WC, Malik YS, Shi Z, Abdel-Moneim AS. World Society for Virology first international conference: Tackling global virus epidemics. Virology 2022; 566:114-121. [PMID: 34902730 PMCID: PMC8646940 DOI: 10.1016/j.virol.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023]
Abstract
This communication summarizes the presentations given at the 1st international conference of the World Society for Virology (WSV) held virtually during 16-18 June 2021, under the theme of tackling global viral epidemics. The purpose of this biennial meeting is to foster international collaborations and address important viral epidemics in different hosts. The first day included two sessions exclusively on SARS-CoV-2 and COVID-19. The other two days included one plenary and three parallel sessions each. Last not least, 16 sessions covered 140 on-demand submitted talks. In total, 270 scientists from 49 countries attended the meeting, including 40 invited keynote speakers.
Collapse
Affiliation(s)
| | - Anupam Varma
- Advanced Centre for Plant Virology Indian Agricultural Research Institute, New Delhi, India
| | - Deyin Guo
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Emma Poole
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Flor H. Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS-Faculty of Biology, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Australia and Research Center in Infectious Diseases of the CHU of Québec and Université Laval, Melbourne, Victoria, Québec City, Quebec, Canada
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Research Program, Centre for Viral Zoonosis, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Michael M. Nevels
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - William C. Wilson
- Foreign Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia, Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt,Corresponding author
| |
Collapse
|
9
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
10
|
Claverie JM, Santini S. Validation of predicted anonymous proteins simply using Fisher's exact test. BIOINFORMATICS ADVANCES 2021; 1:vbab034. [PMID: 36700095 PMCID: PMC9710694 DOI: 10.1093/bioadv/vbab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023]
Abstract
Motivation Genomes sequencing has become the primary (and often the sole) experimental method to characterize newly discovered organisms, in particular from the microbial world (bacteria, archaea, viruses). This generates an ever increasing number of predicted proteins the existence of which is unwarranted, in particular among those without homolog in model organisms. As a last resort, the computation of the selection pressure from pairwise alignments of the corresponding 'Open Reading Frames' (ORFs) can be used to validate their existences. However, this approach is error-prone, as not usually associated with a significance test. Results We introduce the use of the straightforward Fisher's exact test as a postprocessing of the results provided by the popular CODEML sequence comparison software. The respective rates of nucleotide changes at the nonsynonymous versus synonymous position (as determined by CODEML) are turned into entries into a 2 × 2 contingency table, the probability of which is computed under the Null hypothesis that they should not behave differently if the ORFs do not encode actual proteins. Using the genome sequences of two recently isolated giant viruses, we show that strong negative selection pressures do not always provide a solid argument in favor of the existence of proteins.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Aix-Marseille University, CNRS, IGS (UMR7256), IMM (FR3479), Luminy, Marseille F-13288, France,To whom correspondence should be addressed.
| | - Sébastien Santini
- Aix-Marseille University, CNRS, IGS (UMR7256), IMM (FR3479), Luminy, Marseille F-13288, France
| |
Collapse
|
11
|
Sahmi-Bounsiar D, Rolland C, Aherfi S, Boudjemaa H, Levasseur A, La Scola B, Colson P. Marseilleviruses: An Update in 2021. Front Microbiol 2021; 12:648731. [PMID: 34149639 PMCID: PMC8208085 DOI: 10.3389/fmicb.2021.648731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
The family Marseilleviridae was the second family of giant viruses that was described in 2013, after the family Mimiviridae. Marseillevirus marseillevirus, isolated in 2007 by coculture on Acanthamoeba polyphaga, is the prototype member of this family. Afterward, the worldwide distribution of marseilleviruses was revealed through their isolation from samples of various types and sources. Thus, 62 were isolated from environmental water, one from soil, one from a dipteran, one from mussels, and two from asymptomatic humans, which led to the description of 67 marseillevirus isolates, including 21 by the IHU Méditerranée Infection in France. Recently, five marseillevirus genomes were assembled from deep sea sediment in Norway. Isolated marseilleviruses have ≈250 nm long icosahedral capsids and 348–404 kilobase long mosaic genomes that encode 386–545 predicted proteins. Comparative genomic analyses indicate that the family Marseilleviridae includes five lineages and possesses a pangenome composed of 3,082 clusters of genes. The detection of marseilleviruses in both symptomatic and asymptomatic humans in stool, blood, and lymph nodes, and an up-to-30-day persistence of marseillevirus in rats and mice, raise questions concerning their possible clinical significance that are still under investigation.
Collapse
Affiliation(s)
- Dehia Sahmi-Bounsiar
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Hadjer Boudjemaa
- IHU Méditerranée Infection, Marseille, France.,Department of Biology, Faculty of Natural Science and Life, Hassiba Benbouali University of Chlef, Chlef, Algeria
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| |
Collapse
|