1
|
Ulrich NJ, Miller SR. Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium Acaryochloris marina MBIC11017. mBio 2024; 15:e0242324. [PMID: 39555914 PMCID: PMC11633204 DOI: 10.1128/mbio.02423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
Collapse
Affiliation(s)
- Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Scott R. Miller
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
2
|
Elmer KR, Clobert J. Dollo's law of irreversibility in the post-genomic age. Trends Ecol Evol 2024:S0169-5347(24)00249-0. [PMID: 39443236 DOI: 10.1016/j.tree.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Dollo's law of irreversibility argues that evolution cannot revert to earlier states. It has remained controversial ever since its inception in the 19th century. Enabled by advances in phylogenomics and functional genomics, recent studies show that there are very likely some cases of 'breaking Dollo's law'. As post-genomic research grows from showing patterns to revealing processes, new emphasis is needed on the molecular mechanisms by which Dollo's law might be broken. Shifting the argument from 'if it happened' to 'how it happened' will provide richer understanding of organismal and evolutionary biology. Motivated by case studies and novel avenues to test trait loss and regain, we outline a set of alternative hypotheses to be evaluated and what the outcomes tell us about evolution.
Collapse
Affiliation(s)
- Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Station d'Ecologie Théorique et Expérimentale - CNRS, Moulis, 09200, France.
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale - CNRS, Moulis, 09200, France
| |
Collapse
|
3
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
4
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
5
|
Ulrich NJ, Shen G, Bryant DA, Miller SR. Ecological diversification of a cyanobacterium through divergence of its novel chlorophyll d-based light-harvesting system. Curr Biol 2024; 34:2972-2979.e4. [PMID: 38851184 DOI: 10.1016/j.cub.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
| |
Collapse
|
6
|
Garber AI, Sano EB, Gallagher AL, Miller SR. Duplicate Gene Expression and Possible Mechanisms of Paralog Retention During Bacterial Genome Expansion. Genome Biol Evol 2024; 16:evae089. [PMID: 38670115 PMCID: PMC11086944 DOI: 10.1093/gbe/evae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emiko B Sano
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Gallagher
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int J Mol Sci 2023; 24:ijms24032290. [PMID: 36768613 PMCID: PMC9916406 DOI: 10.3390/ijms24032290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment-protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Collapse
|
8
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Yamamoto H, Uesaka K, Tsuzuki Y, Yamakawa H, Itoh S, Fujita Y. Comparative Genomic Analysis of the Marine Cyanobacterium Acaryochloris marina MBIC10699 Reveals the Impact of Phycobiliprotein Reacquisition and the Diversity of Acaryochloris Plasmids. Microorganisms 2022; 10:microorganisms10071374. [PMID: 35889093 PMCID: PMC9324425 DOI: 10.3390/microorganisms10071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Acaryochloris is a marine cyanobacterium that synthesizes chlorophyll d, a unique chlorophyll that absorbs far-red lights. Acaryochloris is also characterized by the loss of phycobiliprotein (PBP), a photosynthetic antenna specific to cyanobacteria; however, only the type-strain A. marina MBIC11017 retains PBP, suggesting that PBP-related genes were reacquired through horizontal gene transfer (HGT). Acaryochloris is thought to have adapted to various environments through its huge genome size and the genes acquired through HGT; however, genomic information on Acaryochloris is limited. In this study, we report the complete genome sequence of A. marina MBIC10699, which was isolated from the same area of ocean as A. marina MBIC11017 as a PBP-less strain. The genome of A.marina MBIC10699 consists of a 6.4 Mb chromosome and four large plasmids totaling about 7.6 Mb, and the phylogenic analysis shows that A.marina MBIC10699 is the most closely related to A. marina MBIC11017 among the Acaryochloris species reported so far. Compared with A. marina MBIC11017, the chromosomal genes are highly conserved between them, while the genes encoded in the plasmids are significantly diverse. Comparing these genomes provides clues as to how the genes for PBPs were reacquired and what changes occurred in the genes for photosystems during evolution.
Collapse
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
- Correspondence: ; Tel.: +81-52-789-4090
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuki Tsuzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Shigeru Itoh
- Graduate School of Sciences, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| |
Collapse
|
10
|
Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California. Microorganisms 2022; 10:microorganisms10040819. [PMID: 35456869 PMCID: PMC9029297 DOI: 10.3390/microorganisms10040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.
Collapse
|
11
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|