1
|
Petipas RH, Antoch AA, Eaker AA, Kehlet-Delgado H, Friesen ML. Back to the future: Using herbarium specimens to isolate nodule-associated bacteria. Ecol Evol 2024; 14:e11719. [PMID: 39011130 PMCID: PMC11246978 DOI: 10.1002/ece3.11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Amanda A Antoch
- Department of Plant Pathology Washington State University Pullman Washington USA
- Department of Microbiology University of Washington Seattle Washington USA
| | - Ashton A Eaker
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Hanna Kehlet-Delgado
- Department of Plant Pathology Washington State University Pullman Washington USA
| | - Maren L Friesen
- Department of Plant Pathology Washington State University Pullman Washington USA
| |
Collapse
|
2
|
Acar T, Moreau S, Jardinaud MF, Houdinet G, Maviane-Macia F, De Meyer F, Hoste B, Leroux O, Coen O, Le Ru A, Peeters N, Carlier A. The association between Dioscorea sansibarensis and Orrella dioscoreae as a model for hereditary leaf symbiosis. PLoS One 2024; 19:e0302377. [PMID: 38648204 PMCID: PMC11034651 DOI: 10.1371/journal.pone.0302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.
Collapse
Affiliation(s)
- Tessa Acar
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Moreau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | | | | | - Bart Hoste
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | | | - Olivier Coen
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie TRI-FRAIB, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Nemo Peeters
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurelien Carlier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Burbano HA, Gutaker RM. Ancient DNA genomics and the renaissance of herbaria. Science 2023; 382:59-63. [PMID: 37797028 DOI: 10.1126/science.adi1180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.
Collapse
Affiliation(s)
- Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| |
Collapse
|
4
|
Verstraete B, Janssens S, De Block P, Asselman P, Méndez G, Ly S, Hamon P, Guyot R. Metagenomics of African Empogona and Tricalysia (Rubiaceae) reveals the presence of leaf endophytes. PeerJ 2023; 11:e15778. [PMID: 37554339 PMCID: PMC10405798 DOI: 10.7717/peerj.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Background Leaf symbiosis is a phenomenon in which host plants of Rubiaceae interact with bacterial endophytes within their leaves. To date, it has been found in around 650 species belonging to eight genera in four tribes; however, the true extent in Rubiaceae remains unknown. Our aim is to investigate the possible occurrence of leaf endophytes in the African plant genera Empogona and Tricalysia and, if present, to establish their identity. Methods Total DNA was extracted from the leaves of four species of the Coffeeae tribe (Empogona congesta, Tricalysia hensii, T. lasiodelphys, and T. semidecidua) and sequenced. Bacterial reads were filtered out and assembled. Phylogenetic analysis of the endophytes was used to reveal their identity and their relationship with known symbionts. Results All four species have non-nodulated leaf endophytes, which are identified as Caballeronia. The endophytes are distinct from each other but related to other nodulated and non-nodulated endophytes. An apparent phylogenetic or geographic pattern appears to be absent in endophytes or host plants. Caballeronia endophytes are present in the leaves of Empogona and Tricalysia, two genera not previously implicated in leaf symbiosis. This interaction is likely to be more widespread, and future discoveries are inevitable.
Collapse
Affiliation(s)
| | - Steven Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Gabriela Méndez
- Grupo de Investigación (BIOARN), Universidad Politécnica Salesiana, Quito, Ecuador
- Facultad de ingenieria, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Serigne Ly
- DIADE, Université de Montpellier, Montpellier, France
| | - Perla Hamon
- DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
5
|
Danneels B, Carlier A. Whole-Genome Sequencing of Bacterial Endophytes From Fresh and Preserved Plant Specimens. Methods Mol Biol 2022; 2605:133-155. [PMID: 36520392 DOI: 10.1007/978-1-0716-2871-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many plants harbor symbiotic bacteria in their leaves, sometimes within structures visible with the naked eye. These bacteria play critical roles for host development and defense, but are often not amenable to culture. Gaining insight into the functions of these obligate endophytic bacteria hinges on culture-independent omics approaches, which have seen tremendous development in recent years. We describe in this chapter a set of protocols for the extraction and bioinformatic analysis of bacterial genomic DNA from leaf samples of various origins, including fresh, silica-preserved, or herbarium specimens.
Collapse
Affiliation(s)
- Bram Danneels
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France. .,Laboratory of Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|