1
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Exploring Iguape Virus-A Lesser-Known Orthoflavivirus. Viruses 2024; 16:960. [PMID: 38932252 PMCID: PMC11209261 DOI: 10.3390/v16060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brazil has earned the moniker "arbovirus hotspot", providing an ideal breeding ground for a multitude of arboviruses thriving in various zoonotic and urban cycles. As the planet warms and vectors expand their habitat range, a nuanced understanding of lesser-known arboviruses and the factors that could drive their emergence becomes imperative. Among these viruses is the Iguape virus (IGUV), a member of the Orthoflavivirus aroaense species, which was first isolated in 1979 from a sentinel mouse in the municipality of Iguape, within the Vale do Ribeira region of São Paulo State. While evidence suggests that IGUV circulates among birds, wild rodents, marsupials, bats, and domestic birds, there is no information available on its pathogenesis in both humans and animals. The existing literature on IGUV spans decades, is outdated, and is often challenging to access. In this review, we have curated information from the known literature, clarifying its elusive nature and investigating the factors that may influence its emergence. As an orthoflavivirus, IGUV poses a potential threat, which demands our attention and vigilance, considering the serious outbreaks that the Zika virus, another neglected orthoflavivirus, has unleashed in the recent past.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
2
|
Shinde DP, Walker J, Reyna RA, Scharton D, Mitchell B, Dulaney E, Bonam SR, Hu H, Plante JA, Plante KS, Weaver SC. Mechanisms of Flavivirus Cross-Protection against Yellow Fever in a Mouse Model. Viruses 2024; 16:836. [PMID: 38932129 PMCID: PMC11209131 DOI: 10.3390/v16060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/β receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic.
Collapse
Affiliation(s)
- Divya P. Shinde
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jordyn Walker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel A. Reyna
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brooke Mitchell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ennid Dulaney
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Srinivisa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.P.S.); (J.W.); (R.A.R.); (D.S.); (B.M.); (E.D.); (S.R.B.); (H.H.); (J.A.P.)
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Nguyen TL, Kim H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS OMEGA 2024; 9:1092-1105. [PMID: 38222668 PMCID: PMC10785064 DOI: 10.1021/acsomega.3c07322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Eastern equine encephalitis virus (EEEV) is a significant threat to human and animal populations, causing severe encephalitis, often leading to long-term neurological complications and even mortality. Despite this, no approved antiviral treatments or EEEV human vaccines currently exist. In response, we utilized immunoinformatics and computational approaches to design a multiepitope vaccine candidate for EEEV. By screening the structural polyprotein of EEEV, we predicted both T-cell and linear B-cell epitopes. These epitopes underwent comprehensive evaluations for their antigenicity, toxicity, and allergenicity. From these evaluations, we selected ten epitopes highly suitable for vaccine design, which were connected with adjuvants using a stable linker. The resulting vaccine construct demonstrated exceptional antigenic, nontoxic, nonallergenic, and physicochemical properties. Subsequently, we employed molecular docking and molecular dynamics simulations to reveal a stable interaction pattern between the vaccine candidate and Toll-like receptor 5. Besides, computational immune simulations predicted the vaccine's capability to induce robust immune responses. Our study addresses the urgent need for effective EEEV preventive strategies and offers valuable insights for EEEV vaccine development. As EEEV poses a severe threat with potential spread due to climate change, our research provides a crucial step in enhancing public health defenses against this menacing zoonotic disease.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary
Program in Bioinformatics, Seoul National
University, Seoul 08826, Republic
of Korea
- eGnome,
Inc., Seoul 05836, Republic of Korea
| |
Collapse
|