1
|
Ramamurthy DL, Rodriguez L, Cen C, Li S, Chen A, Feldman DE. Reward history guides focal attention in whisker somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603927. [PMID: 39131281 PMCID: PMC11312476 DOI: 10.1101/2024.07.17.603927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior reward is a potent cue for attentional capture, but the underlying neurobiology is largely unknown. In a novel whisker touch detection task, we show that mice flexibly shift attention between specific whiskers on a trial-by-trial timescale, guided by the recent history of stimulus-reward association. Two-photon calcium imaging and spike recordings revealed a robust neurobiological correlate of attention in the somatosensory cortex (S1), boosting sensory responses to the attended whisker in L2/3 and L5, but not L4. Attentional boosting in L2/3 pyramidal cells was topographically precise and whisker-specific, and shifted receptive fields toward the attended whisker. L2/3 VIP interneurons were broadly activated by whisker stimuli, motion, and arousal but did not carry a whisker-specific attentional signal, and thus did not mediate spatially focused tactile attention. Together, these findings establish a new model of focal attention in the mouse whisker tactile system, showing that the history of stimuli and rewards in the recent past can dynamically engage local modulation in cortical sensory maps to guide flexible shifts in ongoing behavior.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Lucia Rodriguez
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Neuroscience PhD Program, UC Berkeley
| | - Celine Cen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Siqian Li
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Andrew Chen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Daniel E. Feldman
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Lead Contact
| |
Collapse
|
2
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol 2024; 34:1940-1952.e5. [PMID: 38640924 PMCID: PMC11080572 DOI: 10.1016/j.cub.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA.
| | - Autumn O Mitchell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Rachel K Parker
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Srivastava S, Wang WY, Eckstein MP. Emergent human-like covert attention in feedforward convolutional neural networks. Curr Biol 2024; 34:579-593.e12. [PMID: 38244541 DOI: 10.1016/j.cub.2023.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Covert attention allows the selection of locations or features of the visual scene without moving the eyes. Cues and contexts predictive of a target's location orient covert attention and improve perceptual performance. The performance benefits are widely attributed to theories of covert attention as a limited resource, zoom, spotlight, or weighting of visual information. However, such concepts are difficult to map to neuronal populations. We show that a feedforward convolutional neural network (CNN) trained on images to optimize target detection accuracy and with no explicit incorporation of an attention mechanism, a limited resource, or feedback connections learns to utilize cues and contexts in the three most prominent covert attention tasks (Posner cueing, set size effects in search, and contextual cueing) and predicts the cue/context influences on human accuracy. The CNN's cueing/context effects generalize across network training schemes, to peripheral and central pre-cues, discrimination tasks, and reaction time measures, and critically do not vary with reductions in network resources (size). The CNN shows comparable cueing/context effects to a model that optimally uses image information to make decisions (Bayesian ideal observer) but generalizes these effects to cue instances unseen during training. Together, the findings suggest that human-like behavioral signatures of covert attention in the three landmark paradigms might be an emergent property of task accuracy optimization in neuronal populations without positing limited attentional resources. The findings might explain recent behavioral results showing cueing and context effects across a variety of simple organisms with no neocortex, from archerfish to fruit flies.
Collapse
Affiliation(s)
- Sudhanshu Srivastava
- Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - William Yang Wang
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Miguel P Eckstein
- Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Ghosh S, Maunsell JHR. Rodent attention: Probing the mouse mind with reverse correlation. Curr Biol 2023; 33:R916-R918. [PMID: 37699352 DOI: 10.1016/j.cub.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A novel approach to studying attention in mice reveals processes similar to those in humans and lays out an efficient way to explore its neuronal correlates in a genetically tractable animal model.
Collapse
Affiliation(s)
- Supriya Ghosh
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|