Kam AW, Lam PH, Haen PSWA, Tan M, Shamsudin A, Murrell GAC. Preventing brachial plexus injury during shoulder surgery: a real-time cadaveric study.
J Shoulder Elbow Surg 2018;
27:912-922. [PMID:
29370965 DOI:
10.1016/j.jse.2017.11.030]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND
Brachial plexopathy is not uncommon after shoulder surgery. Although thought to be due to stretch neuropathy, its etiology is poorly understood. This study aimed to identify arm positions and maneuvers that may risk causing brachial plexopathy during shoulder arthroplasty.
METHODS
Tensions in the cords of the brachial plexuses of 6 human cadaveric upper limbs were measured using load cells while each limb was placed in different arm positions and while they underwent shoulder hemiarthroplasty and revision reverse arthroplasty. Arthroplasty procedures in 4 specimens were performed with standard limb positioning (unsupported), and 2 specimens were supported from under the elbow (supported). Each cord then underwent biomechanical testing to identify tension corresponding to 10% strain (the stretch neuropathy threshold in animal models).
RESULTS
Tensions exceeding 15 N, 11 N, and 9 N in the lateral, medial, and posterior cords, respectively, produced 10% strain. Shoulder abduction >70° and combined external rotation >60° with extension >50° increased medial cord tension above the 10% strain threshold. Medial cord tensions (mean ± standard error of the mean) in unsupported specimens increased over baseline during hemiarthroplasty (sounder insertion [4.7 ± 0.6 N, P = .04], prosthesis impaction [6.1 ± 0.8 N, P = .04], and arthroplasty reduction [5.0 ± 0.7 N, P = .04]) and revision reverse arthroplasty (retractor positioning [7.2 ± 0.8 N, P = .02]). Supported specimens experienced lower tensions than unsupported specimens.
CONCLUSIONS
Shoulder abduction >70°, combined external rotation >60° with extension >50°, and downward forces on the humeral shaft may risk causing brachial plexopathy. Retractor placement, sounder insertion, humeral prosthesis impaction, and arthroplasty reduction increase medial cord tensions during shoulder arthroplasty. Supporting the arm from under the elbow protected the brachial plexus in this cadaveric model.
Collapse