1
|
Kedlian VR, Wang Y, Liu T, Chen X, Bolt L, Tudor C, Shen Z, Fasouli ES, Prigmore E, Kleshchevnikov V, Pett JP, Li T, Lawrence JEG, Perera S, Prete M, Huang N, Guo Q, Zeng X, Yang L, Polański K, Chipampe NJ, Dabrowska M, Li X, Bayraktar OA, Patel M, Kumasaka N, Mahbubani KT, Xiang AP, Meyer KB, Saeb-Parsy K, Teichmann SA, Zhang H. Human skeletal muscle aging atlas. NATURE AGING 2024; 4:727-744. [PMID: 38622407 PMCID: PMC11108788 DOI: 10.1038/s43587-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.
Collapse
Affiliation(s)
- Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianliang Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhuojian Shen
- Department of Thoracic Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Jan Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Qin Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinrui Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polański
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xiaobo Li
- Core Facilities for Medical Science, Sun Yat-sen University, Guangzhou, China
| | - Omer Ali Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK.
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Luo J, Wang W, Li J, Duan H, Xu C, Tian X, Zhang D. Epigenome-wide association study identifies DNA methylation loci associated with handgrip strength in Chinese monozygotic twins. Front Cell Dev Biol 2024; 12:1378680. [PMID: 38633108 PMCID: PMC11021642 DOI: 10.3389/fcell.2024.1378680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Background: The decline in muscle strength and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report the epigenetic relationship between genome-wide DNA methylation and handgrip strength (HGS) among Chinese monozygotic (MZ) twins. Methods: DNA methylation (DNAm) profiling was conducted in whole blood samples through Reduced Representation Bisulfite Sequencing method. Generalized estimating equation was applied to regress the DNAm of each CpG with HGS. The Genomic Regions Enrichment of Annotations Tool was used to perform enrichment analysis. Differentially methylated regions (DMRs) were detected using comb-p. Causal inference was performed using Inference about Causation through Examination of Familial Confounding method. Finally, we validated candidate CpGs in community residents. Results: We identified 25 CpGs reaching genome-wide significance level. These CpGs located in 9 genes, especially FBLN1, RXRA, and ABHD14B. Many enriched terms highlighted calcium channels, neuromuscular junctions, and skeletal muscle organ development. We identified 21 DMRs of HGS, with several DMRs within FBLN1, SLC30A8, CST3, and SOCS3. Causal inference indicated that the DNAm of 16 top CpGs within FBLN1, RXRA, ABHD14B, MFSD6, and TYW1B might influence HGS, while HGS influenced DNAm at two CpGs within FBLN1 and RXRA. In validation analysis, methylation levels of six CpGs mapped to FLBN1 and one CpG mapped to ABHD14B were negatively associated with HGS weakness in community population. Conclusion: Our study identified multiple DNAm variants potentially related to HGS, especially CpGs within FBLN1 and ABHD14B. These findings provide new clues to the epigenetic modification underlying muscle strength decline.
Collapse
Affiliation(s)
- Jia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingxian Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Sheet S, Jang SS, Kim JH, Park W, Kim D. A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle. Sci Rep 2024; 14:315. [PMID: 38172605 PMCID: PMC10764957 DOI: 10.1038/s41598-023-51037-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jae Hwan Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| |
Collapse
|
4
|
Shi J, Li W, Liu A, Ren L, Zhang P, Jiang T, Han Y, Liu L. MiRNA sequencing of Embryonic Myogenesis in Chengkou Mountain Chicken. BMC Genomics 2022; 23:571. [PMID: 35948880 PMCID: PMC9364561 DOI: 10.1186/s12864-022-08795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction, GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis determined the significantly different miRNAs between chicken embryo leg muscles at different developmental stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different developmental stages, and the hub miRNAs were screened following the KME value. RESULTS The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267 novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C, FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan module and gga-miR-132b-5p for E21. CONCLUSION These results lay a foundation for further research on the molecular regulatory mechanism of embryonic muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle development studies.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Wendong Li
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Anfang Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingtong Ren
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Pusen Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Ting Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Yuqing Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China.
| |
Collapse
|
5
|
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int J Mol Sci 2019; 20:ijms20215273. [PMID: 31652937 PMCID: PMC6862063 DOI: 10.3390/ijms20215273] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.
Collapse
|
6
|
Naimo MA, Rader EP, Ensey J, Kashon ML, Baker BA. Reduced frequency of resistance-type exercise training promotes adaptation of the aged skeletal muscle microenvironment. J Appl Physiol (1985) 2019; 126:1074-1087. [PMID: 30676867 DOI: 10.1152/japplphysiol.00582.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to characterize the growth and remodeling molecular signaling response in aged skeletal muscle following 1 mo of "resistance-type exercise" training. Male Fischer 344 × Brown Norway hybrid rats aged 3 (young) and 30 mo (old) underwent stretch-shortening contraction (SSC) loading 2 or 3 days/wk; muscles were removed 72 h posttraining. Young rats SSC loaded 3 (Y3x) or 2 days/wk (Y2x) adapted via increased work performance. Old rats SSC loaded 3 days/wk (O3x) maladapted via decreased negative work; however, old rats SSC loaded 2 days/wk (O2x) adapted through improved negative and positive work. Y3x, Y2x, and O2x, but not O3x, displayed hypertrophy via larger fiber area and myonuclear domains. Y3x, Y2x, and O2x differentially expressed 19, 30, and 8 phosphatidylinositol 3-kinase-Akt genes, respectively, whereas O3x only expressed 2. Bioinformatics analysis revealed that rats in the adapting groups presented growth and remodeling processes (i.e., increased protein synthesis), whereas O3x demonstrated inflammatory signaling. In conclusion, reducing SSC-loading frequency in aged rodents positively influences the molecular signaling microenvironment, promoting muscle adaptation. NEW & NOTEWORTHY Decreasing resistance-type exercise training frequency in old rodents led to adaptation through enhancements in performance, fiber areas, and myonuclear domains. Modifying frequency influenced the molecular environment through improvements in phosphatidylinositol 3-kinase-Akt pathway-specific expression and bioinformatics indicating increased protein synthesis. Reducing training frequency may be appropriate in older individuals who respond unfavorably to higher frequencies (i.e., maladaptation); overall, modifying the parameters of the exercise prescription can affect the cellular environment, ultimately leading to adaptive or maladaptive outcomes.
Collapse
Affiliation(s)
- Marshall A Naimo
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia.,Division of Exercise Physiology, School of Medicine, West Virginia University , Morgantown, West Virginia
| | - Erik P Rader
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - James Ensey
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| | - Brent A Baker
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown, West Virginia
| |
Collapse
|
7
|
Swiderski K, Caldow MK, Naim T, Trieu J, Chee A, Koopman R, Lynch GS. Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury. PLoS One 2019; 14:e0212880. [PMID: 30811469 PMCID: PMC6392323 DOI: 10.1371/journal.pone.0212880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Marissa K. Caldow
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Abstract
STUDY DESIGN This is a genetic association study. OBJECTIVE To investigate association between suppressor of cytokine signaling-3 (SOCS3) gene polymorphisms and the onset and progression of lumbar adolescent idiopathic scoliosis (AIS) and to further clarify its role in the regulation of SOCS3 expression in AIS patients. SUMMARY OF BACKGROUND DATA Some studies showed that muscle development imbalance may be responsible for onset and progression of lumbar AIS. SOCS3 is one of the significant regulators of skeletal muscle development, and in vitro study showed that SOCS3 influences myoblast differentiation. MATERIALS AND METHODS Rs4969198 was genotyped in 476 lumbar AIS patients and 672 controls. The differences of genotype and allele distributions between patients and controls were calculated using the χ test. Paravertebral muscles were collected from 53 AIS, 23 congenital scoliosis, and 18 lumbar disk herniation patients. AIS patients were classified into 3 groups according to the genotypes of each single nucleotide polymorphisms, and 1-way analysis of variance test was used to compare SOCS3 expression among different groups and genotypes. RESULTS Patients were found to have a significantly higher frequency of GG than the controls (40.8% vs. 29.9%, odds ratio=1.36; P=0.000), and the frequency of allele G was found to be remarkably higher in the patients than the controls (65.3% vs. 56.7%, odds ratio=1.15; P=0.000). AIS patients had significantly less muscle expression of the SOCS3 than the congenital scoliosis patients (2.73±2.17 vs. 4.62±2.41; P=0.006) and the lumbar disk herniation patients (2.73±2.17 vs. 4.12±2.93; P=0.009). The SOCS3 expression was significantly correlated with the curve severity (r=0.472; P=0.014). CONCLUSIONS The SOCS3 gene is significantly associated with the development of lumbar AIS in Chinese population. Decreased expression of SOCS3 is associated with larger severity of lumbar AIS. LEVEL OF EVIDENCE Level III.
Collapse
|
9
|
Caldow MK, Ham DJ, Chee A, Trieu J, Naim T, Stapleton DI, Swiderski K, Lynch GS, Koopman R. Muscle-specific deletion of SOCS3 does not reduce the anabolic response to leucine in a mouse model of acute inflammation. Cytokine 2017; 96:274-278. [PMID: 28554144 DOI: 10.1016/j.cyto.2017.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/28/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Excessive inflammation reduces skeletal muscle protein synthesis leading to wasting and weakness. The janus kinase/signal transducers and activators of transcription-3 (JAK/STAT3) pathway is important for the regulation of inflammatory signaling. As such, suppressor of cytokine signaling-3 (SOCS3), the negative regulator of JAK/STAT signaling, is thought to be important in the control of muscle homeostasis. We hypothesized that muscle-specific deletion of SOCS3 would impair the anabolic response to leucine during an inflammatory insult. Twelve week old (n=8 per group) SOCS3 muscle-specific knockout mice (SOCS3-MKO) and littermate controls (WT) were injected with lipopolysaccharide (LPS, 1mg/kg) or saline and were studied during fasted conditions or after receiving 0.5g/kg leucine 3h after the injection of LPS. Markers of inflammation, anabolic signaling, and protein synthesis were measured 4h after LPS injection. LPS injection robustly increased mRNA expression of inflammatory molecules (Socs3, Socs1, Il-6, Ccl2, Tnfα and Cd68). In muscles from SOCS3-MKO mice, the Socs3 mRNA response to LPS was significantly blunted (∼6-fold) while STAT3 Tyr705 phosphorylation was exacerbated (18-fold). Leucine administration increased protein synthesis in both WT (∼1.6-fold) and SOCS3-MKO mice (∼1.5-fold) compared to basal levels. LPS administration blunted this effect, but there were no differences between WT and SOCS3-MKO mice. Muscle-specific SOCS3 deletion did not alter the response of AKT, mTOR, S6 or 4EBP1 under any treatment conditions. Therefore, SOCS3 does not appear to mediate the early inflammatory or leucine-induced changes in protein synthesis in skeletal muscle.
Collapse
Affiliation(s)
- M K Caldow
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - D J Ham
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - A Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - J Trieu
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - T Naim
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - D I Stapleton
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - K Swiderski
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - G S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia
| | - R Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Australia.
| |
Collapse
|
10
|
Swiderski K, Thakur SS, Naim T, Trieu J, Chee A, Stapleton DI, Koopman R, Lynch GS. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury. Skelet Muscle 2016; 6:36. [PMID: 27800152 PMCID: PMC5078888 DOI: 10.1186/s13395-016-0108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. METHODS Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 μg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. RESULTS In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α, and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7, MyoD, and Myogenin indicated SOCS3 deletion had no effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. CONCLUSIONS Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.
Collapse
Affiliation(s)
- Kristy Swiderski
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - Savant S Thakur
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - Timur Naim
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - Jennifer Trieu
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - Annabel Chee
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - David I Stapleton
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, 3010 Australia
| |
Collapse
|
11
|
Caldow MK, Digby MR, Cameron-Smith D. Short communication: Bovine-derived proteins activate STAT3 in human skeletal muscle in vitro. J Dairy Sci 2015; 98:3016-9. [PMID: 25726111 DOI: 10.3168/jds.2014-9035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Bovine milk contains biologically active peptides that may modulate growth and development within humans. In this study, targeted bovine-derived proteins were evaluated for their effects on signal transducer and activator of transcription-3 (STAT3) phosphorylation in human skeletal muscle cells. Following an acute exposure, bovine-derived acidic fibroblast growth factor-1 (FGF) and leukemia inhibitory factor (LIF) activated STAT3 in differentiating myotubes. Chronic exposure to FGF and LIF during the proliferative phase reduced myoblast proliferation and elevated MyoD and creatine kinase (CKM) mRNA expression without altering apoptotic genes. In mature myotubes, neither FGF nor LIF elicited any action. Together, these data indicate that a reduction in proliferation in the presence of bovine-derived FGF or LIF may stimulate early maturation of myoblasts.
Collapse
Affiliation(s)
- M K Caldow
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, 3125, Australia; Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Melbourne, 3010, Australia.
| | - M R Digby
- Department of Zoology, University of Melbourne, Melbourne, 3010, Australia
| | - D Cameron-Smith
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, 3125, Australia; Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Kurosaka M, Machida S. Interleukin-6-induced satellite cell proliferation is regulated by induction of the JAK2/STAT3 signalling pathway through cyclin D1 targeting. Cell Prolif 2014; 46:365-73. [PMID: 23869758 DOI: 10.1111/cpr.12045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/02/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To determine whether interleukin-6 (IL-6) stimulates rat muscle satellite cell proliferation in culture, and if so, to clarify the signalling mechanisms. MATERIALS AND METHODS Primary satellite cells were isolated from thirty male F344 rats, 11 weeks of age. IL-6 at concentrations of 0.01, 0.1, 1, 10 or 100 ng/ml was added to culture media. RESULTS IL-6 at 0.01-1 ng/ml induced dose-dependent increase in cell proliferation. After treatment with 1 ng/ml IL-6, cell proliferation increased by 31%, and p-STAT3(+) /MyoD(+) cells increased in number compared to those in control media (P < 0.05). Inhibitors of JAK2 (AG 490) and STAT3 (STAT3 peptide) blocked the increase in BrdUrd(+) cell numbers at 6 h post stimulation with 1 ng/ml IL-6 (P < 0.05). Furthermore, cyclin D1 mRNA expression and cyclin D1(+) /MyoD(+) cell numbers significantly increased in cultures treated with 1 ng/ml IL-6 compared to those in control media (P < 0.05). In contrast, treatment with 10 and 100 ng/ml IL-6 did not stimulate cell proliferation. Treatment with 10 ng/ml IL-6 induced greater SOCS3 mRNA expression than with 1 ng/ml IL-6 and control media. Moreover, co-localization of SOCS3 and myogenin was observed after treatment with 10 ng/ml IL-6. CONCLUSIONS IL-6 induced dose-dependent increase in satellite cell proliferation by activating the JAK2/STAT3/cyclin D1 pathway.
Collapse
Affiliation(s)
- M Kurosaka
- School of Physical Education, Tokai University, Kanagawa, 259-1292, Japan
| | | |
Collapse
|
13
|
Nguyen-Tran DH, Hait NC, Sperber H, Qi J, Fischer K, Ieronimakis N, Pantoja M, Hays A, Allegood J, Reyes M, Spiegel S, Ruohola-Baker H. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 2013; 7:41-54. [PMID: 24077965 PMCID: PMC3882047 DOI: 10.1242/dmm.013631] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
Collapse
Affiliation(s)
- Diem-Hang Nguyen-Tran
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
15
|
Aare S, Radell P, Eriksson LI, Chen YW, Hoffman EP, Larsson L. Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics 2012; 44:865-77. [DOI: 10.1152/physiolgenomics.00031.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Severe muscle wasting and loss of muscle function in critically ill mechanically ventilated intensive care unit (ICU) patients have significant negative consequences on their recovery and rehabilitation that persist long after their hospital discharge; moreover, the underlying mechanisms are unclear. Mechanical ventilation (MV) and immobilization-induced modifications play an important role in these consequences, including endotoxin-induced sepsis. The present study aims to investigate how sepsis aggravates ventilator and immobilization-related limb muscle dysfunction. Hence, biceps femoris muscle gene expression was investigated in pigs exposed to ICU intervention, i.e., immobilization, sedation, and MV, alone or in combination with sepsis, for 5 days. In previous studies, we have shown that ICU intervention alone or in combination with sepsis did not affect muscle fiber size on day 5, but a significant decrease was observed in single fiber maximal force normalized to cross-sectional area (specific force) when sepsis was added to the ICU intervention. According to microarray data, the addition of sepsis to the ICU intervention induced a deregulation of >500 genes, such as an increased expression of genes involved in chemokine activity, kinase activity, and transcriptional regulation. Genes involved in the regulation of the oxidative stress response and cytoskeletal/sarcomeric and heat shock proteins were on the other hand downregulated when sepsis was added to the ICU intervention. Thus, sepsis has a significant negative effect on muscle function in critically ill ICU patients, and chemokine activity and heat shock protein genes are forwarded to play an instrumental role in this specific muscle wasting condition.
Collapse
Affiliation(s)
- Sudhakar Aare
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Peter Radell
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Lars I. Eriksson
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Lars Larsson
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
16
|
Ohno H, Shirato K, Sakurai T, Ogasawara J, Sumitani Y, Sato S, Imaizumi K, Ishida H, Kizaki T. Effect of exercise on HIF-1 and VEGF signaling. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Gran P, Cameron-Smith D. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC PHYSIOLOGY 2011; 11:10. [PMID: 21702994 PMCID: PMC3141572 DOI: 10.1186/1472-6793-11-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/25/2011] [Indexed: 01/18/2023]
Abstract
Background The branched-chain amino acid (BCAA) leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR) through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. Results Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34) and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. Conclusions mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.
Collapse
Affiliation(s)
- Petra Gran
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | | |
Collapse
|